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Abstract

We show that a sequence satisfying a certain symmetry property is 2-regular in the
sense of Allouche and Shallit. We apply this theorem to develop a general approach for
studying the ℓ-abelian complexity of 2-automatic sequences. In particular, we prove that the
period-doubling word and the Thue–Morse word have 2-abelian complexity sequences that
are 2-regular. Along the way, we also prove that the 2-block codings of these two words have
1-abelian complexity sequences that are 2-regular.

1 Introduction

This extended abstract1 is about some structural properties of integer sequences that occur
naturally in combinatorics on words. Since the fundamental work of Cobham [6], the so-called
automatic sequences have been extensively studied. We refer the reader to [3] for basic definitions
and properties. These infinite words over a finite alphabet can be obtained by iterating a
prolongable morphism of constant length to get an infinite word (and then, an extra letter-
to-letter morphism, also called coding, may be applied once). As a fundamental example, the
Thue–Morse word t = σω(0) = 0110100110010110 · · · is a fixed point of the morphism σ over
the free monoid {0, 1}∗ defined by σ(0) = 01, σ(1) = 10. Similarly, the period-doubling word
p = ψω(0) = 01000101010001000100 · · · is a fixed point of the morphism ψ over {0, 1}∗ defined
by ψ(0) = 01, ψ(1) = 00.

Let k ≥ 2 be an integer. One characterization of k-automatic sequences is that their k-kernels
are finite; see [7] or [3, Section 6.6].

Definition 1. The k-kernel of a sequence s = s(n)n≥0 is the set

Kk(s) = {s(kin+ j)n≥0 : i ≥ 0 and 0 ≤ j < ki}.

For instance, the 2-kernel K2(t) of the Thue–Morse word contains exactly two elements, namely
t and σω(1).

A natural generalization of automatic sequences to sequences on an infinite alphabet is given by
the notion of k-regular sequences. We will restrict ourselves to sequences taking integer values
only.
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Definition 2. Let k ≥ 2 be an integer. A sequence s = s(n)n≥0 ∈ Z
N is k-regular if 〈Kk(s)〉 is a

finitely-generated Z-module, i.e., there exist a finite number of sequences s1(n)n≥0, . . . , sℓ(n)n≥0

such that every sequence in the k-kernel Kk(s) is a Z-linear combination of the sr’s. Otherwise
stated, for all i ≥ 0 and for all j ∈ {0, . . . , ki − 1}, there exist integers c1, . . . , cℓ such that

∀n ≥ 0, s(kin+ j) =
ℓ

∑

r=1

cr tr(n).

Allouche and Shallit give many natural examples of k-regular sequences and classical results [1,
2]. The k-regularity of a sequence provides us with structural information about how the different
terms are related to each other.

We will often make use of the following composition theorem for a function F defined piecewise
on several k-automatic sets.

Lemma 3. Let k ≥ 2. Let P1, . . . , Pℓ : N → {0, 1} be unary predicates that are k-automatic.
Let f1, . . . , fℓ be k-regular functions. The function F : N → N defined by

F (n) =

ℓ
∑

i=1

fi(n)Pi(n)

is k-regular.

A classical measure of complexity of an infinite word x is its factor complexity P
(∞)
x : N → N

which maps n to the number of distinct factors of length n occurring in x. It is well known that
a k-automatic sequence x has a k-regular factor complexity function [13, 5]. As an example,
again for the Thue–Morse word, we have

P
(∞)
t (2n + 1) = 2P

(∞)
t (n+ 1) and P

(∞)
t (2n) = P

(∞)
t (n+ 1) + P

(∞)
t (n)

for all n ≥ 2.

Recently there has been a renewal of interest in abelian notions arising in combinatorics on
words (e.g., avoiding abelian or ℓ-abelian patterns, abelian bordered words, etc.). For instance,
two finite words u and v are abelian equivalent if one is obtained by permuting the letters of the
other one. Since the Thue–Morse word is an infinite concatenation of factors 01 and 10, this
word is abelian periodic of period 2. The abelian complexity of an infinite word x is a function

P
(1)
x : N → N which maps n to the number of distinct factors of length n occurring in x, counted

up to abelian equivalence. Madill and Rampersad [12] provided the first example of regularity in
this setting: the abelian complexity of the paper-folding word (which is another typical example
of an automatic sequence) is unbounded and 2-regular.

Let ℓ ≥ 1 be an integer. Based on [9] the notions of abelian equivalence and thus abelian
complexity were recently extended to ℓ-abelian equivalence and ℓ-abelian complexity [10].

Definition 4. Let u, v be two finite words. We let |u|v denote the number of occurrences of the
factor v in u. Two finite words x and y are ℓ-abelian equivalent if |x|v = |y|v for all words v of
length |v| ≤ ℓ.

As an example, the words 011010011 and 001101101 are 2-abelian equivalent but not 3-abelian
equivalent (the factor 010 occurs in the first word but not in the second one). Hence one can

define the function P
(ℓ)
x : N → N which maps n to the number of distinct factors of length n

occurring in the infinite word x, counted up to ℓ-abelian equivalence. In particular, for any
infinite word x, we have for all n ≥ 0

P
(1)
x (n) ≤ · · · ≤ P

(ℓ)
x (n) ≤ P

(ℓ+1)
x (n) ≤ · · · ≤ P

(∞)
x (n).



Since we are interested in ℓ-abelian complexity, it is natural to consider the following operation
that permits us to compare factors of length ℓ occurring in an infinite word.

Definition 5. Let ℓ ≥ 1. The ℓ-block coding of the word w = w0w1w2 · · · over the alphabet A
is the word

block(w, ℓ) = (w0 · · ·wℓ−1) (w1 · · ·wℓ) (w2 · · ·wℓ+1) · · · (wj · · ·wj+ℓ−1) · · ·

over the alphabet Aℓ. If A = {0, . . . , r − 1}, then it is convenient to identify Aℓ with the set
{0, . . . , rℓ − 1} and each word w0 · · ·wℓ−1 of length ℓ is thus replaced with the integer obtained
by reading the word in base r, i.e.,

∑ℓ−1
i=0 wi r

ℓ−1−i. It is well known that the ℓ-block coding of
a k-automatic sequence is again a k-automatic sequence [6]. One can also define accordingly
the ℓ-block coding of a finite word u of length at least ℓ. For example, the 2-block codings of
011010011 and 001101101 are respectively 13212013 and 01321321, which are abelian equivalent.

Lemma 6. [10, Lemma 2.3] Let ℓ ≥ 1. Two finite words u and v of length at least ℓ − 1 are
ℓ-abelian equivalent if and only if they share the same prefix (resp. suffix) of length ℓ−1 and the
words block(u, ℓ) and block(v, ℓ) are abelian equivalent.

In this paper, we show that both the period-doubling word p and the Thue–Morse word t have
2-abelian complexity sequences which are 2-regular. In [11], the authors studied the asymptotic

behavior of P
(ℓ)
t (n) and also derived some recurrence relations showing that the abelian com-

plexity P
(1)
p (n)n≥0 of the period-doubling word p is 2-regular. From [4], one can deduce some

other relations about the abelian complexity of p.

Given the first few terms of a sequence, the second and last authors conjectured the 2-regularity

of the sequence P
(2)
t (n)n≥0 by exhibiting relations that should be satisfied (and proved some

recurrence relations for this sequence) [16]. See [2, Section 6] for such a “predictive” algorithm
that recognizes regularity. Recently, Greinecker proved the recurrence relations needed to prove
the 2-regularity of this sequence [8]. Hopefully, the two approaches are complementary: in this
paper, we prove 2-regularity without exhibiting the explicit recurrence relations.

Our approach is based on Theorem 7, which establishes the 2-regularity of a large family of se-
quences satisfying a recurrence relation with a parameter c and 2ℓ0 initial conditions. Computer
experiments suggest that many 2-abelian complexity functions satisfy such a reflection property.

Theorem 7. Let ℓ0 ≥ 0 and c ∈ Z. Suppose s(n)n≥0 is a sequence such that, for all ℓ ≥ ℓ0 and
0 ≤ r ≤ 2ℓ − 1, we have

s(2ℓ + r) =

{

s(r) + c if r ≤ 2ℓ−1

s(2ℓ+1 − r) if r > 2ℓ−1.
(1)

Then s(n)n≥0 is 2-regular.

It turns out that the general solution of Equation (1) can be expressed naturally in terms of
the sequence A(n)n≥0 satisfying the recurrence for ℓ0 = 0 and c = 1 with A(0) = 0. The
sequence A(n)n≥0 appears as [14, A007302]. Allouche and Shallit [2] identified this sequence as
an example of a regular sequence.

From Equation (1) one can get some information about the asymptotic behavior of the sequence
s(n)n≥0. We have s(n) = O(log n), and moreover

s
(

4ℓ+1−1
3

)

= s(4ℓ + · · ·+ 41 + 40) =
(

ℓ−
⌊

ℓ0−1
2

⌋)

c+ s
(

4⌊(ℓ0+1)/2⌋−1
3

)

for ℓ ≥ ⌊ ℓ0−1
2 ⌋. At the same time, there are many subsequences of s(n)n≥0 which are constant;

for example, s(2ℓ) = c for ℓ ≥ ℓ0.

Example 8. As an illustration of the reflection property described in Theorem 7, we consider
in Figure 1 the abelian complexity of the 2-block coding of the period-doubling word p.

http://oeis.org/A007302
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Figure 1: The abelian complexity of block(p, 2) on the intervals [32, 64] and [64, 128].

2 2-Abelian complexity of the period-doubling word

To show the 2-regularity of the 2-abelian complexity of p, we consider first the abelian complexity

of the 2-block coding x of p and then we compare P
(1)
x (n) with P

(2)
p (n+1). The 2-block coding

of p is given by

x := block(p, 2) = φω(1) = 12001212120012001200121212001212 · · ·

where φ is the morphism defined by φ : 0 7→ 12, 1 7→ 12, 2 7→ 00.

We introduce functions related to the number of 0’s in the factors of x of length n. Let n ∈ N.
We let max0(n) (resp. min0(n)) denote the maximum (resp. minimum) number of 0’s in a factor
of x of length n. Let ∆0(n) := max0(n)−min0(n) be the difference between these two values.

To prove the 2-regularity of the sequence P
(1)
x (n)n≥0, we first express P

(1)
x (n) in terms of ∆0(n).

Proposition 9. For n ∈ N,

P
(1)
x (n) =











3
2∆0(n) +

3
2 if ∆0(n) is odd

3
2∆0(n) + 1 if ∆0(n) and n−min0(n) are even
3
2∆0(n) + 2 if ∆0(n) and n−min0(n) + 1 are even.

To be able to apply the composition result given by Lemma 3 to the expression of P
(1)
x , we have

therefore to prove that the sequence ∆0(n)n≥0 is 2-regular (this is consequence of the following
result) and that the predicates occurring in the previous statement are 2-automatic.

Proposition 10. Let ℓ ≥ 2 and 0 ≤ r < 2ℓ. We have

∆0(2
ℓ + r) =

{

∆0(r) + 2 if r ≤ 2ℓ−1

∆0(2
ℓ+1 − r) if r > 2ℓ−1.

As a consequence of Propositions 9 and 10, P
(1)
x (n) satisfies a reflection recurrence as in Theo-

rem 7 with ℓ0 = 2 and c = 3. This implies again that the sequence is 2-regular.

Now consider the 2-abelian complexity P
(2)
p . To apply Lemma 3, we will express P

(2)
p in terms

of the abelian complexity P
(1)
x and the following additional 2-automatic functions.

Definition 11. We define the max-jump function MJ0 : N → {0, 1} by MJ0(n) = 1 when the
function max0 increases. Similarly, let mj0 : N → {0, 1} be the min-jump function defined by
mj0(n) = min0(n+ 1)−min0(n).

To compute P
(2)
p , we will study when an abelian equivalence class of x splits into two 2-abelian

equivalence classes of p. Let X be an abelian equivalence class of factors of x of length n with



n0 zeros. We can show that X can possibly lead to two 2-abelian equivalence classes of factors
of length n + 1 of p only if n and n0 are both even. In most cases, X will indeed leads to two
distinct 2-abelian equivalence classes. The exceptions can be identified using the max-jump and

min-jump functions. The relationship between these two functions and P
(2)
p and P

(1)
x is stated

in the following result.

Proposition 12. Let n ≥ 1 be an integer. Then

P
(2)
p (n + 1)− P

(1)
x (n) =

{

0 if n is odd
∆0(n)

2 + 1−MJ0(n)−mj0(n) if n is even.

In particular, the sequence P
(2)
p (n)n≥0 is 2-regular.

3 2-Abelian complexity of the Thue–Morse word

In this section, we turn our attention to the Thue–Morse word t. The approach here is similar
to the one of the period-doubling word: we consider the abelian complexity of y = block(t, 2),

and then we compare P
(1)
y (n) with P

(2)
t (n+ 1). The 2-block coding of t is given by

y := block(t, 2) = νω(1) = 132120132012132120121320 · · ·

where ν is the morphism defined by ν : 0 7→ 12, 1 7→ 13, 2 7→ 20, 3 7→ 21.

For the Thue–Morse word, the appropriate statistic for factors of y is the total number of
1’s and 2’s (or, equivalently, the total number of 0’s and 3’s). Therefore, for n ∈ N we set
∆12(n) := max12(n) − min12(n) where max12(n) (resp. min12(n)) denote the maximum (resp.
minimum) of {|u|1 + |u|2 : u is a factor of y with |u| = n}.

In particular, ∆12(n)+1 is the abelian complexity function P
(1)
p (n) of the period-doubling word.

This function was also studied in [4, 11]. Here we can obtain relations for ∆12 of the same type
as in Theorem 7.

As in the previous section, the fact that P
(1)
y (n)n≥0 is 2-regular will follow from Lemma 3 applied

to the next statement.

Proposition 13. Let n ∈ N. We have

P
(1)
y (n) =























2∆12(n) + 2 if n is odd
5
2∆12(n) +

5
2 if n and ∆12(n) + 1 are even

5
2∆12(n) + 4 if n, ∆12(n) and min12(n) + 1 are even
5
2∆12(n) + 1 if n, ∆12(n) and min12(n) are even.

(2)

As in Section 2, we define two new functions MJ03(n) and mj03(n) analogously to Definition 11.

This permits us to compute the difference P
(2)
t (n+ 1)− P

(1)
y (n).

Theorem 14. Let n ∈ N. The difference P
(2)
t (n + 1) −P

(1)
y (n) is equal to















































∆12(n) + 2− 2MJ03(n)− 2mj
03
(n) if n, min12(n) + 1 and ∆12(n) + 1 are odd

∆12(n) + 1− 2MJ03(n) if n, min12(n) + 1 and ∆12(n) are odd

∆12(n) + 1− 2mj
03
(n) if n, min12(n) and ∆12(n) are odd

∆12(n) if n, min12(n) and ∆12(n) + 1 are odd
1

2
∆12(n) + 1 if n, min12(n) and ∆12(n) are even

1

2
∆12(n) if n, min12(n) + 1 and ∆12(n) are even

1

2
∆12(n) +

1

2
if n and ∆12(n) + 1 are even.

In particular, the sequence P
(2)
t (n)n≥0 is 2-regular.



4 Conclusions

The two examples treated in this paper suggest that a general framework to study the ℓ-abelian
complexity of k-automatic sequences may exist. Indeed, one conjectures that any k-automatic
sequence has an ℓ-abelian complexity function that is k-regular. As an example, if we consider
the 3-block coding of the period-doubling word,

z = block(p, 3) = 240125252401240124 · · · .

The abelian complexity P
(1)
z (n)n≥0 = (1, 5, 5, 8, 6, 10, 19, 11, . . .) seems to satisfy, for ℓ ≥ 4, the

following relations (which are quite similar to what we have discussed so far)

P
(1)
z (2ℓ + r) =











P
(1)
z (r) + 5 if r ≤ 2ℓ−1 and r even

P
(1)
z (r) + 7 if r ≤ 2ℓ−1 and r odd

P
(1)
z (2ℓ+1 − r) if r > 2ℓ−1.

Then, the second step would be to relate P
(3)
p with P

(1)
z .
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