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Abstract

We show that a sequence satisfying a certain symmetry property is 2-regular in the
sense of Allouche and Shallit. We apply this theorem to develop a general approach for
studying the ¢-abelian complexity of 2-automatic sequences. In particular, we prove that the
period-doubling word and the Thue-Morse word have 2-abelian complexity sequences that
are 2-regular. Along the way, we also prove that the 2-block codings of these two words have
1-abelian complexity sequences that are 2-regular.

1 Introduction

This extended abstractll is about some structural properties of integer sequences that occur
naturally in combinatorics on words. Since the fundamental work of Cobham [6], the so-called
automatic sequences have been extensively studied. We refer the reader to [3] for basic definitions
and properties. These infinite words over a finite alphabet can be obtained by iterating a
prolongable morphism of constant length to get an infinite word (and then, an extra letter-
to-letter morphism, also called coding, may be applied once). As a fundamental example, the
Thue—Morse word t = 0“(0) = 0110100110010110- - - is a fixed point of the morphism o over
the free monoid {0,1}* defined by ¢(0) = 01, (1) = 10. Similarly, the period-doubling word
p = ¥*(0) = 01000101010001000100 - - - is a fixed point of the morphism v over {0,1}* defined
by 1(0) = 01, ¥(1) = 00.

Let k£ > 2 be an integer. One characterization of k-automatic sequences is that their k-kernels
are finite; see [7] or [3, Section 6.6].

Definition 1. The k-kernel of a sequence s = s(n),>¢ is the set
Ki(s) = {s(k'n+ j)n>0:4>0and 0 < j < k'}.

For instance, the 2-kernel KCy(t) of the Thue-Morse word contains exactly two elements, namely
t and o“(1).

A natural generalization of automatic sequences to sequences on an infinite alphabet is given by
the notion of k-regular sequences. We will restrict ourselves to sequences taking integer values
only.
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Definition 2. Let k > 2 be an integer. A sequence s = s5(n),>o € Z" is k-regular if (Kj(s)) is a
finitely-generated Z-module, i.e., there exist a finite number of sequences s1(n)p>0, - - -, Se(n)n>0
such that every sequence in the k-kernel Ky (s) is a Z-linear combination of the s,’s. Otherwise
stated, for all i > 0 and for all j € {0,...,k" — 1}, there exist integers cy, ..., c, such that

¢

Vn >0, s(kin4j)= Zcr tr(n).
r=1

Allouche and Shallit give many natural examples of k-regular sequences and classical results [I]
2]. The k-regularity of a sequence provides us with structural information about how the different
terms are related to each other.

We will often make use of the following composition theorem for a function F' defined piecewise
on several k-automatic sets.

Lemma 3. Let k > 2. Let Py,...,P; : N — {0,1} be unary predicates that are k-automatic.
Let fy,..., fr be k-reqular functions. The function F': N — N defined by

¢
F(n) =Y fi(n) Pi(n)
i=1
1s k-regular.

A classical measure of complexity of an infinite word x is its factor complexity 73,((00) :N—- N
which maps n to the number of distinct factors of length n occurring in x. It is well known that
a k-automatic sequence x has a k-regular factor complexity function [13] [5]. As an example,
again for the Thue-Morse word, we have

PE (20 + 1) = 2P0 (n -+ 1) and P (20) = P (0 + 1) 4+ PO ()

for all n > 2.

Recently there has been a renewal of interest in abelian notions arising in combinatorics on
words (e.g., avoiding abelian or (-abelian patterns, abelian bordered words, etc.). For instance,
two finite words v and v are abelian equivalent if one is obtained by permuting the letters of the
other one. Since the Thue-Morse word is an infinite concatenation of factors 01 and 10, this
word is abelian periodic of period 2. The abelian complexity of an infinite word x is a function
73,(3) : N — N which maps n to the number of distinct factors of length n occurring in x, counted
up to abelian equivalence. Madill and Rampersad [12] provided the first example of regularity in
this setting: the abelian complexity of the paper-folding word (which is another typical example
of an automatic sequence) is unbounded and 2-regular.

Let ¢ > 1 be an integer. Based on [9] the notions of abelian equivalence and thus abelian
complexity were recently extended to f-abelian equivalence and f-abelian complexity [10].

Definition 4. Let u, v be two finite words. We let |u|, denote the number of occurrences of the
factor v in u. Two finite words = and y are £-abelian equivalent if |z|, = |y|, for all words v of
length |v| < 2.

As an example, the words 011010011 and 001101101 are 2-abelian equivalent but not 3-abelian
equivalent (the factor 010 occurs in the first word but not in the second one). Hence one can

define the function 79,((@ : N = N which maps n to the number of distinct factors of length n
occurring in the infinite word x, counted up to f-abelian equivalence. In particular, for any
infinite word x, we have for all n > 0

73)((1)(71) <... < 73)((15)(”) < ,P)((ZJrl)(n) <...< P,((Oo)(n),



Since we are interested in f-abelian complexity, it is natural to consider the following operation
that permits us to compare factors of length ¢ occurring in an infinite word.

Definition 5. Let £ > 1. The ¢-block coding of the word w = wowqws - - - over the alphabet A
is the word

block(w, £) = (wo - - we—1) (w1 -~ we) (wa -~ wegr) -+ (W5 - Wjpp—1) -

over the alphabet A¢. If A = {0,...,r — 1}, then it is convenient to identify A’ with the set
{0,... rt— 1} and each word wy - - - wy—7 of length £ is thus replaced with the integer obtained
by reading the word in base r, i.e., Zf;ol w; rt=17%. Tt is well known that the ¢-block coding of
a k-automatic sequence is again a k-automatic sequence [6]. One can also define accordingly
the /-block coding of a finite word u of length at least £. For example, the 2-block codings of

011010011 and 001101101 are respectively 13212013 and 01321321, which are abelian equivalent.

Lemma 6. [10, Lemma 2.3] Let £ > 1. Two finite words uw and v of length at least £ — 1 are
L-abelian equivalent if and only if they share the same prefix (resp. suffiz) of length £ —1 and the
words block(u, £) and block(v, £) are abelian equivalent.

In this paper, we show that both the period-doubling word p and the Thue-Morse word t have

2-abelian complexity sequences which are 2-regular. In [I1], the authors studied the asymptotic
behavior of Pt(g) (n) and also derived some recurrence relations showing that the abelian com-
plexity Pé,l)(n)nzo of the period-doubling word p is 2-regular. From [4], one can deduce some
other relations about the abelian complexity of p.

Given the first few terms of a sequence, the second and last authors conjectured the 2-regularity

of the sequence Pt(2) (n)n>0 by exhibiting relations that should be satisfied (and proved some
recurrence relations for this sequence) [16]. See [2, Section 6] for such a “predictive” algorithm
that recognizes regularity. Recently, Greinecker proved the recurrence relations needed to prove
the 2-regularity of this sequence [8]. Hopefully, the two approaches are complementary: in this
paper, we prove 2-regularity without exhibiting the explicit recurrence relations.

Our approach is based on Theorem [7, which establishes the 2-regularity of a large family of se-
quences satisfying a recurrence relation with a parameter ¢ and 2% initial conditions. Computer
experiments suggest that many 2-abelian complexity functions satisfy such a reflection property.

Theorem 7. Let {y > 0 and c € Z. Suppose s(n)n>o is a sequence such that, for all £ > ly and

O§r§25—1, we have
s(r) +c if r < 2671
s(264+7) = 1
( ) {5(2“1 —r) ifr>20L )

Then s(n)p>o s 2-regular.

It turns out that the general solution of Equation (I can be expressed naturally in terms of
the sequence A(n),>¢ satisfying the recurrence for ¢p = 0 and ¢ = 1 with A(0) = 0. The
sequence A(n),>o appears as [14], '/A007302]. Allouche and Shallit [2] identified this sequence as
an example of a regular sequence.

From Equation (I]) one can get some information about the asymptotic behavior of the sequence
$(n)p>0. We have s(n) = O(logn), and moreover

s (—4”;—1) —s(4' 4 4 4% = (e - L—ZO;D c+s (74“%*;””—1)
for ¢ > L%J At the same time, there are many subsequences of s(n),>o which are constant;
for example, 5(2%) = ¢ for £ > /.

Example 8. As an illustration of the reflection property described in Theorem [l we consider
in Figure [l the abelian complexity of the 2-block coding of the period-doubling word p.


http://oeis.org/A007302

Figure 1: The abelian complexity of block(p,2) on the intervals [32,64] and [64, 128].

2 2-Abelian complexity of the period-doubling word

To show the 2-regularity of the 2-abelian complexity of p, we consider first the abelian complexity
of the 2-block coding x of p and then we compare P (n) with 771()2) (n+1). The 2-block coding
of p is given by

x := block(p, 2) = ¢*(1) = 12001212120012001200121212001212 - - -

where ¢ is the morphism defined by ¢ : 0 — 12,1 — 12,2 +— 00.

We introduce functions related to the number of 0’s in the factors of x of length n. Let n € N.
We let maxg(n) (resp. ming(n)) denote the maximum (resp. minimum) number of 0’s in a factor
of x of length n. Let Ag(n) := maxg(n) — ming(n) be the difference between these two values.

To prove the 2-regularity of the sequence P (n)n>0, we first express P,&l)(n) in terms of Ag(n).

Proposition 9. Forn € N,
3Ao(n)+ 2 if Ag(n) is odd

P,((l)(n) =9 580(n)+1 if Ag(n) and n —ming(n) are even
3Ao(n)+2 if Ag(n) and n — ming(n) + 1 are even.

wW N

To be able to apply the composition result given by Lemma [B] to the expression of 77,(<1)7 we have
therefore to prove that the sequence Ag(n),>0 is 2-regular (this is consequence of the following
result) and that the predicates occurring in the previous statement are 2-automatic.

Proposition 10. Let £ > 2 and 0 <r < 20 We have

Ao(r) +2 if < 2071

Ao(2 4+ 7) =
o2 +7) {A0(24+1—7~) if r > 2671,

As a consequence of Propositions [9 and [I0] P,&l)(n) satisfies a reflection recurrence as in Theo-
rem [[l with £y = 2 and ¢ = 3. This implies again that the sequence is 2-regular.
Now consider the 2-abelian complexity Pé?). To apply Lemma Bl we will express PIE,Q) in terms

)

of the abelian complexity 73,((1 and the following additional 2-automatic functions.

Definition 11. We define the maz-jump function MJy : N — {0,1} by MJg(n) = 1 when the
function maxg increases. Similarly, let mj, : N — {0,1} be the min-jump function defined by
mjy(n) = ming(n + 1) — ming(n).

To compute 73[(,2), we will study when an abelian equivalence class of x splits into two 2-abelian
equivalence classes of p. Let X be an abelian equivalence class of factors of x of length n with



ng zeros. We can show that X can possibly lead to two 2-abelian equivalence classes of factors
of length n + 1 of p only if n and ng are both even. In most cases, X will indeed leads to two
distinct 2-abelian equivalence classes. The exceptions can be identified using the max-jump and

min-jump functions. The relationship between these two functions and 7315,2) and 73,((1) is stated
in the following result.

Proposition 12. Let n > 1 be an integer. Then

0 if n is odd

P (n+1) =P (n) =
p (n+1) (n) A02(n) +1—MJg(n) —mjy(n) if n is even.

In particular, the sequence 7319 (n)p>0 is 2-regular.

3 2-Abelian complexity of the Thue—Morse word

In this section, we turn our attention to the Thue—Morse word t. The approach here is similar
to the one of the period-doubling word: we consider the abelian complexity of y = block(t,2),

and then we compare P)(,l)(n) with 77,5(2) (n+ 1). The 2-block coding of t is given by

y := block(t,2) = v*(1) = 132120132012132120121320 - - -
where v is the morphism defined by v : 0 — 12,1 +— 13, 2 — 20,3 > 21.

For the Thue-Morse word, the appropriate statistic for factors of y is the total number of
1’s and 2’s (or, equivalently, the total number of 0’s and 3’s). Therefore, for n € N we set
Aj2(n) := maxj2(n) — minja(n) where maxjo(n) (resp. minjz(n)) denote the maximum (resp.
minimum) of {|ul; + |ulz : u is a factor of y with |u| = n}.

In particular, Aja(n)+1 is the abelian complexity function Pé,l) (n) of the period-doubling word.
This function was also studied in [4, [IT]. Here we can obtain relations for A1y of the same type
as in Theorem [71

As in the previous section, the fact that Py) (n)n>0 is 2-regular will follow from Lemma 3l applied
to the next statement.

Proposition 13. Let n € N. We have

2A12 (n
5

if n is odd
n if n and Aya(n) + 1 are even

+2

P(l)(n) _ 3812(n) + 3
Y 2A12(n) +4  ifn, Aa(n) and minia(n) + 1 are even

Agz(n) +1

2)

5 n if n, Aq1a(n) and minja(n) are even.

As in Section 2] we define two new functions MJy3(n) and mjys(n) analogously to Definition [Tl
This permits us to compute the difference Pt@) (n+1)— P)(,l)(n).

Theorem 14. Let n € N. The difference 7752) (n+1)— 3(,1)(71) is equal to

Aja(n) +2 —2MJo3(n) — 2mjgs(n) if n, minja(n) + 1 and A12(n) + 1 are odd
Aja(n) +1 —2MJpz(n) if n, minya(n) + 1 and Aj2(n) are odd
Aja(n) + 1 —2mjyz(n) if n, miny2(n) and Aja2(n) are odd

Aq2(n) if n, minia(n) and Ai2(n) + 1 are odd
1A12(n) +1 if n, minja(n) and A12(n) are even
%Alg(n) if n, minyja(n) + 1 and Ai2(n) are even
%Alg(n) + % if n and A12(n) + 1 are even.

In particular, the sequence 77,5(2) (n)n>0 is 2-regular.



4 Conclusions

The two examples treated in this paper suggest that a general framework to study the £-abelian
complexity of k-automatic sequences may exist. Indeed, one conjectures that any k-automatic
sequence has an £-abelian complexity function that is k-regqular. As an example, if we consider
the 3-block coding of the period-doubling word,

z = block(p, 3) = 240125252401240124 - - - .

The abelian complexity Pél)(n)nzo = (1,5,5,8,6,10,19,11,...) seems to satisfy, for £ > 4, the
following relations (which are quite similar to what we have discussed so far)

Pz(l)(r) +5 if » <21 and r even

P4+ =PV 47 ifr <2 and 7 odd
P — ) it > 2L,

Then, the second step would be to relate 73[(,3) with Pz(l).
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