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Abstract

We obtain the following three results: (1) There is a strategy to build an arbitrarily long
nonrepetitive word over 6 letters in the erase-repetition game. (2) From every assignment of
lists of size 5 to the vertices of a caterpillar graph, we can extract a nonrepetitive coloring.
(3) There exist infinite words avoiding shuffle squares over 7 letters. Results (1) and (2) are
obtained using the entropy compression method. Result (3) is obtained by the power series
technique of Bell and Goh.

1 Introduction

Grytczuk et al. [5] introduced the erase-repetition game over a finite alphabet. It is a two-player
game between Ann and Ben. They build a word by alternately choosing a letter and appending
it to the end of the current word. Whenever a square occurs, the second half of the square is
erased and the next player continues extending the remaining prefix of the sequence. Ann’s goal
is to obtain an arbitrarily long (squarefree) word whereas Ben’s goal is to prevent this. Grytczuk
et al. [5] have obtained a winning strategy for Ann with an alphabet of size 8. We lower this
bound to 6 in Section 2.

It is known that the nonrepetitive chromatic number of the class of caterpillars is 4. In Section 3,
we show that the nonrepetitive choice number of the class of caterpillars is 4 or 5.

Recently, Currie [2] has answered a question of Karhumäki by showing that shuffle squares
(see [2] for the definition) are avoidable over an alphabet of size
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using the Lovász local
lemma. We lower this bound to 7 in Section 4.

For the first two results, we use the entropy compression method as described in [5] to prove that
the nonrepetitive choice number of the path is at most 4. The last result is also nonconstructive
and uses power series.

2 The erase-repetition game

Theorem 1. In the erase-repetition game over an alphabet of size 6, there exists a strategy for

Ann to build an arbitrarily long squarefree word.

Proof. We describe Ann’s strategy. Let w = w1 . . . wi be the word before Ann’s turn. If
wi−3 = wi then Ann chooses a letter that is distinct from wi, wi−1, and wi−2. Otherwise,
let j be the largest integer such that j < i, wj−1wj = wi−1wi, and wj+1 6= wi−1. Then Ann

∗Corresponding author, Univ. Montpellier 2, LIRMM
†CNRS, LIRMM



chooses a letter distinct from wi, wi−1, and wj+1 (if j is defined). This strategy implies that Ann
and Ben do not generate repetitions of size at most 11. The proof of this assertion is omitted
due to lack of space.

Suppose there exists n such that Ben has a strategy to keep the length of the built word smaller
than n. Let t be the number of moves for Ann. We say that a move of Ben is trivial if he adds
to the current word its last letter, so that the added letter is immediatly erased. We record the
final built word and the partial Dyck word corresponding to the history of the length of the built
word, except that we omit Ben’s trivial moves. In this Dyck word, all the descents have length
at least 12. There are o(1.485k) Dyck words of length 2k such that all the descents have length
at least 12 (see [3] for the computation of the asymptotics of Dyck words with a constrained set
of descent lengths). For k = 2t, this gives 7n× o(1.4852t) = o(3t) distinct records, whereas there
are 3t possible executions. This is a contradiction since we can recover Ann’s moves from Ben’s
moves, the final built word, and the partial Dyck word, as proved in [5].

An alphabet of size 6 is thus sufficient for Ann’s strategy: at each step, Ann discards three
letters to ensure that Ann and Ben cannot create a non-trivial square of size at most 11, then
the three letters that remain are sufficient for the entropy compression argument.

3 Nonrepetitive list coloring of caterpillars

It is known that trees admit a nonrepetitive coloring with 4 colors [6] and it is easy to check
that 4 colors are indeed needed for a sufficiently long caterpillars of maximum degree 3. For the
list version of nonrepetitive coloring, the corresponding choice number is unbounded for trees [4]
but is bounded for graphs of bounded pathwidth [7]. In this section we consider nonrepetitive
list coloring of caterpillars, i.e., graphs with pathwidth 1, and we prove the following:

Theorem 2. The nonrepetitive choice number of a caterpillar is at most 5.

Proof. We first color the vertices of the spine using entropy compression. We require that the
word corresponding to the colors on the spine avoids squares and factors of the form AxyA
where x and y are letters and A is a non-empty word. We suppose that there exists a path of
length n and lists of size 5 on its vertices such that we cannot extract a coloring avoiding squares
and factors AxyA. The algorithm proceeds as follows: If the suffix of the current word is aba
then we choose a color distinct from a and b, otherwise this suffix is abc with a 6= c and we
choose a color distinct from a and c. We thus discard two colors in order to forbid factors of the
form aa, abab, and abca. If the color chosen by the algorithm creates a factor AxyA, then we
erase the suffix of length |A|. Since the factors abca are forbidden, we have that |A| > 2. After
t steps, the algorithm has recorded a partial coloring and a partial Dyck word corresponding
to the number of colored vertices during the execution of the algorithm. Since we never erase
exactly one letter, the Dyck word has no descent of length 1. It is well-known that the number of
such partial Dyck words is o(3t). The number of potential records is at most 5n × o(3t) = o(3t),
whereas there are 3t possible executions (see [3] for the computation of the asymptotics of Dyck
words with a constrained set of descent lengths).

Lists of size 5 are thus sufficient to avoid squares and factors AxyA: two colors are discarded in
order to forbid aa, abab, and abca, then the remaining list of size at least 3 is able to avoid the
factors AxyA with |A| > 2.

Now we color the leaves (vertices of degree 1) with a color distinct from the colors of the 3
vertices at distance at most two that belong to the spine. Since the size of the lists is 5, there
remain at least 2 possibilities to color a leaf.



To finish the proof, we check that coloring the leaves does not create a square. Squares of size at
most two are avoided by the previous rule. A square of size at least three would imply a factor
AxyA in the coloring of the spine.

4 Avoiding shuffle squares

The following theorem was originally presented by Golod (see [9], Lemma 6.2.7) and rewritten
and proven with combinatorial terminology by Rampersad [8].

Theorem 3. Let S be a set of words over an m-letter alphabet, each word of length at least 2.
Suppose that for each i > 2, the set S contains at most ai words of length i. If the power series

expansion of

G(x) :=

(

1−mx+
∑

i>2

aix
i

)−1

(1)

has non-negative coefficients, then there are least [xn]G(x) words of length n over an m-letter

alphabet that avoid S.

To use Theorem 3, we need to obtain reasonable upper bounds on the number ai of forbidden
factors. These forbidden factors are the minimal shuffle squares, i.e., the shuffle squares that do
not contain a smaller shuffle square. To a shuffle square S of a word w of length i, we associate
the height function h : [0, . . . , 2i] → Z defined as follows:

• h(0) = 0.

• For 0 < j 6 2i if S[j] belongs to the left factor w, then h(j) = h(j − 1) + 1.

• For 0 < j 6 2i if S[j] belongs to the right factor w, then h(j) = h(j − 1)− 1.

Notice that h(2i) = 0. Moreover, if h(j) = 0 for some 0 < j < 2i, then the prefix of length j of S
is a shuffle square. So, if h is the height function of a minimal shuffle square, then h(2i) > 0 for
every 0 < j < 2i. Thus, there is a bijection between height functions of minimal shuffle squares
and Dyck words of length 2i − 2. The number of such functions is thus Ci−1 = (2i−1)!

i! (i−1)! . We
consider the m-letter alphabet. A minimal shuffle square S of a word w of length i is determined
by w and the height function of S. There are thus at most Ci−1m

i minimal shuffle squares of
length 2i. We will need sharper bounds on the number of small minimal shuffle squares: there
are m(m− 1) minimal shuffle squares of length 4 and 2m(m− 1)(m− 2) minimal shuffle squares
of length 6.

To every word w of length i > 1 over Σm = {0, . . . ,m− 1} avoiding (shuffle) squares of length
2, we associate a code c (similar to Pansiot’s code) of length i − 1 over the m − 1 letters
{1, . . . ,m− 1} such that c[j] = (w[j + 1]−w[j]) (mod m) for 1 6 j < i. Notice that exactly m
words w (determined by their first letter) have the same code. By the previous observations, we
can upper bound the number of codes of minimal shuffle squares:

• There are (m− 1) codes of length 3 corresponding to minimal shuffle squares of length 4.

• There are 2(m − 1)(m − 2) codes of length 5 corresponding to minimal shuffle squares of
length 6.

• There are at most Ci−1m
i−1 codes of length 2i−1 corresponding to minimal shuffle squares

of length 2i.



Now, we can apply Theorem 3 to the language of codes of words avoiding shuffle squares. Thus
we consider the power series expansion of

G(x) :=

(

1− (m− 1)x+ (m− 1)x3 + 2(m− 1)(m− 2)x5 +
∑

i>4

Ci−1m
i−1x2i−1

)−1

We set m = 7 and sk = [xk]G(x). We prove by induction on k that sk >
√
30sk−1. From the

relation

1 =

(

1− 6x+ 6x3 + 60x5 +
∑

i>4

Ci−17
i−1x2i−1

)



1 +
∑

k>1

skx
k



 ,

we deduce

sk = 6sk−1 − 6sk−3 − 60sk−5 −
∑

46j6(k+1)/2

Cj−17
j−1sk−2j+1 for k > 1.

By induction, we have sk−2j+1 <
sk−1

(
√
30)2j−2

=
sk−1

30j−1 for 1 6 j 6 (k + 1)/2.

We obtain

sk = 6sk−1 − 6sk−3 − 60sk−5 −
∑

46j6(k+1)/2

Cj−17
j−1sk−2j+1

> 6sk−1 −
6

30
sk−1 −

60

302
sk−1 −

∑

46j6(k+1)/2

Cj−17
j−1 sk−1

30j−1

=




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−

∑

46j6(k+1)/2

Cj−1

(

7

30

)j−1


 sk−1

=





86
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−

∑

36j6(k−1)/2

Cj

(

7

30

)j


 sk−1

>




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−
∑

j>3

Cj

(

7

30

)j


 sk−1

=





86

15
+ 1 +

7

30
+ 2

(

7

30

)2

−
∑

j>0

Cj

(

7

30

)j


 sk−1

Notice that
∑

j>0Cjz
j = 2

1+
√
1−4z

for |z| < 1
4 , since it corresponds to the power series of Catalan

numbers. We thus obtain

sk >





1592

225
− 2

1 +
√

1− 4× 7
30



 sk−1 >
√
30sk−1,

which proves the induction. This shows that sk > 30k/2. By Theorem 3, there exist at least
30n/2 codes of length n. This means that there exist at least 7× 30(n−1)/2 words of length n > 1
avoiding shuffle squares over a 7-letter alphabet. We have thus proved the following:

Theorem 4. Shuffle squares are 7-avoidable.
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