
A note on regular interval exchange sets over a quadratic field

Francesco Dolce

Université Paris Est
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Abstract

A set of words is said morphic if it is the set of factors of a morphic word. We prove that
the interval exchange set relative to a regular interval exchange transformation defined over
a quadratic field is morphic. We give two different proofs of this result, the first using the
notion of return words and derived words, and the second employing only some properties
of interval exchange transformations.

1 Introduction

Interval exchange transformations were introduced by Oseledec [19] following an earlier idea
of Arnol’d [1]. These transformations form a generalization of rotations of the circle (the two
notions coincide when there are exactly 2 intervals). Rauzy introduced in [21] a transformation,
now called Rauzy induction (or Rauzy-Veech induction), which operates on interval exchange
transformations. It transforms an interval exchange transformation into another, operating on
a smaller semi-interval. Its iteration can be viewed as a generalization of the continued fraction
development. The induction consists of taking the first return map of the transformation with
respect to a particular subsemi-interval of the original semi-interval. A two-sided version of
the Rauzy induction is studied in [6], along with a characterization of the so-called admissible

semi-intervals, namely the semi-intervals reachable by the iteration of this two-sided induction.

Interval exchange transformations defined over quadratic fields are studied by Boshernitzan and
Carroll in [8] and [9]. They show that, using iteratively the first return map on one of the
semi-intervals exchanged by this kind of transformation, one obtains only a finite number of
different new transformations up to rescaling. This result extends Lagrange’s classical theorem
saying that quadratic irrationals have a periodic continued fraction expansion. In this paper
we generalize this result by studying interval exchange transformations defined over quadratic
fields and inducing on two-sided admissible semi-intervals (see also [6]).

Several authors have studied the links between combinatorics on words and dynamical systems
(for example [15]). For the particular case of interval exchange transformations, see for example
[2], [6], [13] and [16]. The main contribution of this paper is that a regular interval exchange
set, i.e. the set of factors of a natural coding of a regular interval exchange transformation, is
the set of factors of a primitive morphic word (Theorem 7).

The paper is organized as follows. Section 2 is devoted to some basic definitions of combinatorics
on words. In Section 3, we recall some notions concerning interval exchange transformations,
such as minimality and regularity. We also introduce an equivalence relation on the set of interval
exchange transformations. In Section 4 we evoke the Rauzy induction and the generalization
to its two-sided version. We also recall the definition of admissibility and show how this notion
is related to the Rauzy induction (Theorem 1). We conclude the section by introducing the



equivalence graph of a regular interval exchange transformation. Section 5 is devoted to the
natural coding of an interval exchange transformation and the related notion of interval exchange
set, i.e. the set of factors of a natural coding. We recall a result of [6] showing that two particular
families of semi-intervals are admissible (Proposition 3) and that two equivalent regular interval
exchange transformations, with the second obtained from the first by a sequence of Rauzy
inductions, have the same set of factors. The final part of this paper, Section 6, is devoted to
the proof of our main contribution (Theorem 7). We give two different demonstrations of this
result. First, we use the notion of derived words and return words, as well as Durand’s result
(see [12]) on derived words and primitive morphic words. Thereafter, we show the same result
using only the properties of minimal and regular interval exchange transformations.

2 Words and sets

Let A be a finite nonempty alphabet. All words considered below, unless stated explicitly, are
supposed to be on the alphabet A. We denote by A∗ the set of all words on A. We denote by 1
or by ε the empty word. We refer to [3] for the notions of a prefix, suffix and factor of a word.
See also [7] for a more detailed presentation of words, sets and morphisms.

A morphism f : A∗ → B∗ is a monoid morphism from A∗ into B∗. If f : A∗ → A∗ and a ∈ A is
such that the word f(a) begins with a and if |fn(a)| tends to infinity with n, there is a unique
infinite word denoted fω(a) which has all words fn(a) as prefixes. It is called a fixpoint of the
morphism f . A morphism f : A∗ → A∗ is called primitive if there is an integer k such that for all
a, b ∈ A, the letter b appears in fk(a). An infinite word y over an alphabet B is called morphic

if there exists a morphism f on an alphabet A, a fixpoint x = fω(a) of f and a morphism
σ : A∗ → B∗ such that y = σ(x). If A = B and σ is the identity map, we call y purely morphic.
If f is primitive we say that the word is primitive morphic.

A set F of words on the alphabet A is said to be factorial if it contains the factors of its elements.
A factorial set of words F 6= {1} is recurrent if for every u,w ∈ F there exists a v ∈ F such
that uvw ∈ F . If F is a recurrent set, then there exists an infinite word x such that F = F (x),
i.e. F is the set of factors of a word x (see, for example, [3]). Extending the definition, we say
that a set F (x) is morphic (resp. purely morphic, primitive morphic) if the infinite word x is
morphic (resp. purely morphic, primitive morphic). A set F is said to be right-extendable if for
every w ∈ F there exists some a ∈ A such that wa ∈ F . It is said to be uniformly recurrent if
it is right-extendable and if, for any word u ∈ F , there exists an integer n ≥ 1 such that u is
a factor of every word of F of length n. If f is a primitive morphism, the set of factors of any
fixpoint of f is uniformly recurrent (see [14]). It is easy to see that uniform recurrence implies
recurrence.

3 Interval exchange transformation

Let [ℓ, r[ be a nonempty semi-interval of the real line and A = {a1, a2, . . . , as} a finite ordered
alphabet with a1 < a2 < · · · < as. Let (Ia)a∈A be an ordered partition of [ℓ, r[ into semi-intervals
and denote by λi the length of Iai . Let π ∈ Ss be a permutation on A. We define γi =

∑

aj<ai
λj

and δi =
∑

π(aj)<π(ai)
λj. The interval exchange transformation relative to (Ia)a∈A is the map

T : [ℓ, r[→ [ℓ, r[ defined by

T (z) = z + αa if z ∈ Ia,

where αa = δa − γa. The values (αa)a∈A are called the translation values of T . Observe that
the restriction of T to Ia is a translation onto Ja = T (Ia), that γi is the left boundary of Iai and



that δj is the left boundary of Jai . Note that the family (Ja)a∈A is also a partition of [ℓ, r[. In
particular, the transformation T defines a bijection from [ℓ, r[ onto itself. An interval exchange
transformation relative to (Ia)a∈A is also said to be an s-interval exchange transformation. We
will also denote T = Tπ,λ, where λ = (λi)ai∈A is the ordered sequence of the lengths of the
semi-intervals. Note that the transformation Tπ,λ does not depend on the choice of the left
point ℓ.

To give an example, every rotation of angle α on the semi-interval [0, 1[, i.e. the function defined
as T (z) = z + α mod 1 for every 0 ≤ z < 1, is an interval exchange transformation relative to
the partition ([0, 1 − α[, [1 − α, 1[) with permutation π = (12).

The orbit of a point z ∈ [ℓ, r[ is the set O(z) = {T n(z) | n ∈ Z}. The transformation T is said
to be minimal if for any z ∈ [ℓ, r[, O(z) is dense in [ℓ, r[. The points 0 = γ1, γ2, . . . , γs form the
set of separation points of T , denoted Sep(T ). Note that the transformation T has at most s−1
singularities (points at which it is not continuous), which are among the nonzero separation
points γ2, . . . , γs. An interval exchange transformation Tπ,λ is called regular if the orbits of the
nonzero separation points γ2, . . . , γs are infinite and disjoint. Note that the orbit of 0 cannot be
disjoint from the others since one has T (γi) = 0 for some i with 2 ≤ i ≤ s. A regular interval
exchange transformation is also said to satisfy the idoc (infinite disjoint orbit condition). As an
example, every rotation of irrational angle is a regular 2-interval exchange transformation. Any
regular interval exchange transformation is minimal (see [18]).

Two s-interval exchange transformations Tπ,λ and Tσ,µ are said to be equivalent if σ = π and
µ = cλ for some c > 0. We denote by [Tπ,λ] the equivalence class of Tπ,λ.

4 Rauzy induction

Let T = Tπ,λ be a minimal s-interval exchange transformation on [ℓ, r[ and let I ⊂ [ℓ, r[ be
a semi-interval. Since T is minimal, for each z ∈ [ℓ, r[ there exists an integer n > 0 such
that T n(z) ∈ I. The transformation induced by T on I is the first return map on I, i.e. the
transformation S : I → I defined for z ∈ I by S(z) = T n(z) with n = min{n > 0 | T n(z) ∈ I}.
The semi-interval I is called the domain of S, denoted D(S). Note that the transformation
induced by an s-interval exchange transformation on [ℓ, r[ on any semi-interval included in [ℓ, r[
is always an interval exchange transformation on at most s+ 2 intervals (see [10]).

Rauzy introduced in [21] a transformation ψ, now called right Rauzy induction, which operates
on interval exchange transformations. It transforms an interval exchange transformation into
another, operating on a smaller semi-interval. Namely, ψ(T ) is the transformation induced by
T on [ℓ,max{γs, δπ(s)}[. In the same paper, the intervals obtained by iteration of this induction,
the so-called right admissible semi-intervals, are characterized. It is also proved that the Rauzy
induction preserves the regularity if the domain is a right-admissible semi-interval.

The symmetrical notion of left Rauzy induction, denoted by ϕ, is defined in [6], where symmet-
rical results are also shown. In the same paper a two-sided version of the Rauzy induction is
introduced along with the generalized notion of admissible semi-interval.

One of the main results of [6] is the following:

Theorem 1 Let T be a regular s-interval exchange transformation on [ℓ, r[. For any admissible

semi-interval I, the transformation S induced by T on I is a regular s-interval exchange trans-

formation. Moreover, a semi-interval I is admissible for T if and only if there exists a sequence

χ ∈ {ϕ,ψ}∗ such that I is the domain of χ(T ). In this case, the transformation induced by T

on I is χ(T ).



For every a ∈ A, the semi-intervals Ia and Ja are admissible (see [6]). In the following we show
an important generalization of this result (Proposition 3).

For an interval exchange transformation T we consider the labelled directed graph G(T ), called
the equivalence graph of T , defined as follows. The vertices are the equivalence classes of trans-
formations obtained starting from T and applying all possible χ ∈ {ψ,ϕ}∗. There is an edge
labelled ψ starting from a vertex [T ] to a vertex [S] if and only if S = ψ(T ) for two transforma-
tions T ∈ [T ] and S ∈ [S]. We define similarly the edges labelled ϕ.

Note that, in general, the equivalence graph can be infinite. A sufficient condition for the
equivalence graph to be finite is proved in [11] (generalizing a result of [9]). Namely, the graph
is finite if the lengths of all exchanged intervals belong to a quadratic number field. We can
reformulate this as follows:

Theorem 2 Let T be a regular interval exchange transformation defined over a quadratic field.

The family of all induced transformation of T over an admissible semi-interval contains finitely

many distinct transformations up to equivalence.

5 Natural coding

Let T be an interval exchange transformation relative to (Ia)a∈A. For a given point z ∈ [ℓ, r[,
the natural coding of T relative to z is the infinite word ΣT (z) = a0a1 · · · on the alphabet A
defined by

an = a if T n(z) ∈ Ia.

For a word w = b0b1 · · · bm−1, let Iw be the set

Iw = Ib0 ∩ T
−1(Ib1) ∩ . . . ∩ T

−m+1(Ibm−1
).

Set Jw = Tm(Iw). Thus

Jw = Tm(Ib0) ∩ T
m−1(Ib1) ∩ · · · ∩ T (Ibm−1

).

In particular, we have Ja = T (Ia) for a ∈ A. Note that, for every w ∈ A∗, both Iw and Jw are
semi-intervals (see [4]). We set by convention Iε = Jε = [ℓ, r[. Then one has for any n ≥ 0

anan+1 · · · an+m−1 = w ⇐⇒ T n(z) ∈ Iw

and
an−man−m+1 · · · an−1 = w ⇐⇒ T n(z) ∈ Jw.

Let (αa)a∈A be the translation values of T . Note that for any word w ∈ A∗, Jw = Iw + αw,
where αw =

∑m−1
j=0 αbj (see [4]). In particular, the restriction of T |w| to Iw is a translation.

If T is a minimal interval exchange transformation, one has w ∈ F (ΣT (z)) if and only if Iw 6= ∅.
Thus the set F (ΣT (z)) does not depend on z. Since it depends only on T , we denote it by F (T ).
When T is regular (resp. minimal), such a set is called a regular interval exchange set (resp. a
minimal interval exchange set). The following result is proved in [6].

Proposition 3 Let T be a regular interval exchange transformation. For any w ∈ F (T ), the
semi-intervals Iw and Jw are admissible.

Let T be a regular interval exchange transformation and S a transformation obtained from T by
two-sided Rauzy inductions. The following theorem, proved in [6], proves that the set of factors
of T is the same of the set of factors of S up to isomorphism.



Theorem 4 Let T be a regular interval exchange transformation. For χ ∈ {ψ,ϕ}∗, let S = χ(T )
and let I be the domain of S. There is an automorphism θ of the free group on A such that

ΣT (z) = θ(ΣS(z)) for all z ∈ I.

Note that if the transformations T and S = χ(T ), with χ ∈ {ψ,ϕ}∗, are equivalent, then
there exists a point z0 ∈ I such that z0 is a fixpoint of the isometry that transforms D(S)
into D(T ) (if χ is different from the identity map, this point is unique). In that case one has
ΣS(z0) = ΣT (z0) = θ (ΣS(z0)) for an appropriate automorphism θ, that is ΣT (z0) is a fixpoint
of an appropriate automorphism.

Let T = Tπ,λ. The automorphism θ of the free group defined in Theorem 4 is obtained as a
composition of the two elementary automorphism θ1, θ2, extentions of the monoidal morphism
from A∗ into itself defined by

θ1(a) =

{

aπ(s)as if a = aπ(s)

a otherwise
, θ2(a) =

{

aπ(s)as if a = as

a otherwise
.

This automorphism “keeps track” of the iteration of T in the first return map S, by mapping
every letter a of ΣS(z) to the word θ(a) ∈ F (ΣT (z)), corresponding to the “path” of z in the
natural coding of T (see [6] for a more detailed presentation and examples).

6 Return words and derived words

Let F be a recurrent set. For w ∈ F , let ΓF (w) = {x ∈ F | xw ∈ F ∩ wA+} be the set of left
return words to w and let RF (w) = ΓF (w) \A

+ΓF (w) be the set of first left return words to w.
Clearly, a recurrent set F is uniformly recurrent if and only if the set RF (w) is finite for any
w ∈ F .

Let F be a recurrent set and let w ∈ F . A coding morphism for the set RF (w) is a morphism
fw : B∗ → A∗ which maps bijectively the (possibly infinite) alphabet B onto RF (w) (note that
this morphism is unique up to renaming the letters of B). The set f−1

w (Fw−1), denoted Dw(F ),
is called the derived set of F with respect to w.

Let F be a recurrent set and x be an infinite word such that F = F (x). Let w ∈ F and let fw
a coding morphism for the set RF (w). Since w appears infinitely often in x, there is a unique
factorization x = vz with z ∈ RF (w)

ω where w is not a factor of v. Clearly, if w is a prefix of
x then v = ε. The infinite word f−1

w (z) is called the derived word of x relative to w, denoted
Dw(x). The derived set of F with respect to w is the set of factors of the derived words of x
relative to w, that is Dw(F ) = F (Dw(x)) (see [6]).

It is proved in [6] that the family of regular interval exchange sets is closed under derivation,
meaning that any derived set of a regular s-interval exchange set is a regular s-interval exchange
set. The same property holds for Sturmian sets (see [17]) and for uniformly recurrent tree sets
(see [5]).

Let T be a regular interval exchange transformation relative to a partition of semi-intervals whose
length belongs to a quadratic number field. Let z ∈ D(T ). Suppose that ΣT (z) = b0b1 · · · . Let
(Tn)n∈N be the sequence of interval exchange transformations defined as T0 = T , and Tn+1

the transformation induced by Tn on the interval Jb0b1···bn . Since Jw is admissible for every
w ∈ F (T ), every transformation of the sequence is obtained by the previous transformation
using iteratevely the two-sided Rauzy induction. Hence, by Theorem 2, the sequence (Tn)n
contains finitely many distinct transformations up to equivalence. Let k ≥ h ≥ 0 be such
that [Th] = [Tk]. Then it is easy to see that the family of distinct transformations is exactly



{T0, T1, . . . Tk−1}. Moreover, by Theorem 4 and the remark following it, there exists a point
z0 ∈ D(Tk) such that ΣTh+p

(z0) = ΣTk+p
(z0) for every p ≥ 0.

Set x = ΣT (z0) = b0b1 · · · . By the observation at the end of Section 5, one has Db0b1···bn(x) =
ΣTn(z0). Hence, we have the following:

Proposition 5 Let T be a regular interval exchange transformation. There exists a point z ∈
D(T ) such that the number of derived words of ΣT (z) relative to its prefixes is finite.

In [12], F. Durand proved the following result, linking derived words to primitive morphic words.

Theorem 6 An infinite word is primitive morphic if and only if the number of its different

derived words relative to its prefixes is finite.

From Theorem 6 and Proposition 5 it easily follows that, given a regular interval exchange
transformation T , there exists a point z ∈ D(T ) such that the natural coding of T relative
to z is primitive morphic. Since T is minimal, the set F (T ) does not depend on the point z.
Therefore, we have the following result:

Theorem 7 Let T be a regular interval exchange transformation defined over a quadratic field.

Then the interval exchange set F (T ) is primitive morphic.

We conclude the section by giving an alternative and direct proof of Theorem 7, without using
the notion of derived words. In order to do this, we need some preliminar results.

Lemma 8 Let T be a minimal interval exchange transformation. For every N > 0 there exists

an ε > 0 such that for every z ∈ D(T ), one has

|T n(z)− z| < ε =⇒ n ≥ N.

Sketch of the proof. We can choose ε = min
{
∣

∣

∣

∑M
ij=1 αij

∣

∣

∣
| ij = 1, . . . s, M ≤ N

}

.

Lemma 9 Let T, χ(T ) be two equivalent regular interval exchange transformations with χ ∈
{ϕ,ψ}∗. There exists a primitive morphism θ and a point z ∈ D(T ) such that the natural coding

of T relative to z is a fixpoint of θ.

Proof. Every natural coding of T is uniformly recurrent (see [4]). Thus, there exists a positive
integer N such that every letter of the alphabet appears in every word of length N of F (T ).
Moreover, applying iteratively the Rauzy induction, the length of the domains tends to 0 (see
Theorem 3.12 of [6]). Consider T ′ = χm(T ), for a big enough positive integer m, such that
D(T ′) < ε, where ε is the positive real number for which, by Lemma 8, the first return map for
every point of the domain is “longer” than N , i.e. T ′(z) = T n(z)(z), with n(z) ≥ N , for every
z ∈ D(T ′). By Theorem 4 and the remark following it, there exists an automorphism θ of the
free group and a point z ∈ D(T ) such that the natural coding of T relative to z is the image by
θ of the natural coding of T ′ relative to the same point, i.e. ΣT (z) = θ (ΣT ′(z)). By the previous
argument, the image of every letter by θ is longer than N , hence it contains every letter of the
alphabet as a factor. Therefore, θ is a primitive morphism.

Using the previous lemmas we can give an alternative proof of Theorem 7.

Alternative proof of Theorem 7. By Theorem 2 there exists a regular interval transformation S
such that we can find in the equivalence graph of T a path from [T ] to [S] followed by a cycle
on [S]. Thus, there exists a point z ∈ D(S) and two automorphisms θ, η of the free group such
that ΣT (z) = θ (ΣS(z)), with ΣS(z) a fixpoint of η. By Lemma 9 we can suppose, without loss
of generality, that η is primitive. Therefore, F (T ) is a primitive morphic set.
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