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Abstract

First, we present an overview of results on words rich in palindromes and examples of
rich words. We introduce G-richness, where G is a finite group generated by involutory
antimorphisms over A∗. We study G-analogue of results known for the classical richness.
Finally, we concentrate on the question how to construct G-rich words. We recall the notion
of generalized palindromic closure which uses multiple antimorphisms. Then we define an
operation S, which (sometimes) maps G′-rich words to G′′-rich words for (in general) distinct
groups G′ and G′′. This operation provides a tool for construction of G-rich words, in
particular for construction of a new class of binary words rich in the classical sense.

1 Introduction

Words rich in palindromes attract attention of many authors. One of the reasons is a plenty
of distinct ways to characterize rich words. In this sense rich words are similar to Sturmian
words. Let us recall that a palindrome is a fixed point of the mapping R which assigns to a
word w = w0w1 · · ·wn its reversal R(w) = wnwn−1 · · ·w0.

An infinite word u over the alphabet A is said to be rich if its language L(u) is saturated by
palindromes up to the highest possible level. To specify this bound, we denote by Pal(w) the
set of all palindromes (including the empty word) occurring in the word w. As proven in [9]
by Droubay and Pirillo, #Pal(w) ≤ |w| + 1 for any word w, where |w| stands for the length
of the word w. An infinite word u is called rich (or full) if each factor w ∈ L(u) satisfies
#Pal(w) = |w|+ 1.

Prominent binary rich words are Sturmian words. Further examples of binary rich words are
Rote words [4] and period doubling word [1]. Arnoux–Rauzy words and words coding interval
exchange transformation under the symmetric permutation of intervals represent examples of
rich words over a multiliteral alphabet.

For a word u having its language closed under reversal, several equivalent definitions of richness
were formulated. They use the concepts of complete return word occurring in u, factor complex-
ity C of u, palindromic complexity P of u, graph of symmetries Γn(u) of u, bilateral order b(w)
of factor w of u, etc. The following theorem summarizes some properties characterizing rich
words with language closed under reversal, their proofs and precise definitions of used notation
can be found in [10, 8, 6, 2].

Theorem 1. For an infinite word u with language closed under reversal the following statements
are equivalent:
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1. u is rich,

2. any complete return word of any palindromic factor of u is a palindrome,

3. for any factor w of u, every factor of u that contains w only as its prefix and R(w) only
as its suffix is a palindrome,

4. the longest palindromic suffix of any factor w ∈ L(u) is unioccurrent in w,

5. for each n ∈ N the following equality holds

C(n+ 1)− C(n) + 2 = P(n) + P(n+ 1),

6. each graph of symmetries Γn(u) satisfies: all its loops are palindromes and the graph
obtained from Γn(u) by removing loops is a tree,

7. the bilateral order b(w) of any bispecial factor w of u and its set of palindromic extensions
Pext(w) = {awa ∈ L(u) : awa = R(awa)} satisfy:

• if w is non-palindromic, then b(w) = 0,

• if w is a palindrome, then b(w) = #Pext(w)− 1 .

A property weaker than richness is often considered in connection with the number of palin-
dromes occurring in factors. More precisely, an infinite word u is almost rich if there exists a
constant K such that |w|+ 1−K ≤ #Pal(w) ≤ |w|+ 1 for any w ∈ L(u). The minimal such K
is usually referred to as the defect of u.

The first attempt to generalize the notion richness appeared in [3] and then in [17]. The reversal
mapping R is replaced by an arbitrary involutory antimorphism Ψ : A∗ → A∗, i.e., by the
mapping with the following properties:

Ψ2 = Id and Ψ(uv) = Ψ(v)Ψ(u) for any u, v ∈ A∗ .

If w = Ψ(w), then w is a Ψ-palindrome or pseudopalindrome and Ψ-richness can be introduced
analogously. As shown in [12], any uniformly recurrent Ψ-rich word is a morphic image of a rich
word. In this sense, considering Ψ instead of R does not bring a broader variability into the
concept of rich words.

2 G-richness

Recently we have introduced a further generalization of the notion of richness. The inspiration
originates in the Thue–Morse word uTM ∈ {0, 1}N. Its language contains infinitely many palin-
dromes and E-palindromes, where E is the antimorphism exchanging 0 and 1. Nevertheless,
uTM is neither rich nor E-rich. Our generalization of richness therefore consists in considering
more antimorphisms simultaneously.

Let G be a finite group generated by involutory antimorphisms over A∗. A word w ∈ A∗ is a
G-palindrome if w = Ψ(w) for some antimorphism Ψ ∈ G. Denote the orbit of w ∈ A∗ under
G by [w] = {µ(v) : µ ∈ G}. Since G is finite, all elements of [w] have the same length as w
itself. Although we originally used for the definition of G-richness the G-analogue of the point
6 in Theorem 1 (see [13]), we demonstrated in [15] that the notion G-richness can be defined by
many ways as well. We present here the definition based on the analogue with the point 3 in
Theorem 1. Therefore we need to generalize the notion of return word.



Definition 2. Let v, w ∈ A∗. A word v of length greater than |w| is a complete G-return word
of [w] if a prefix and a suffix of v belong to [w] and v contains no other occurrences of elements
from [w].

Example 3. Consider the binary alphabet {0, 1}, the group H generated by the two involutory
antimorphisms R and E, and the Thue–Morse word

uTM = 01101001100101101001011001101001100101 . . .

which is a fixed point of the substitution 0 7→ 01 and 1 7→ 10.

The orbit of w = 001 ∈ L(uTM ) equals

[w] = {001, R(001), E(001), ER(001)} = {001, 100, 011, 110}.

Let us list all the complete H-return words of [w] in uTM :

v(1) = 0110, v(2) = 1001, v(3) = 0011, v(4) = 1100, v(5) = 110100, v(6) = 001011.

All of the six complete H-return words are H-palindromes, since v(1) and v(2) are R-palindromes
and the remaining four complete H-return words are E-palindromes.

Definition 4. Let G be a finite group generated by involutory antimorphisms over A∗ and
u ∈ AN be an infinite word such that L(u) is closed under G, i.e., µ(w) belongs to L(u) for each
w ∈ L(u) and µ ∈ G. We say that u is G-rich if each complete G-return word of [w] in u is a
G-palindrome for any w ∈ L(u).

If the group G contains only one antimorphism R and the word u has language closed under
reversal, then the classical richness and G-richness coincide. To avoid confusion in the sequel,
the classical richness will be referred to as R-richness.

The notion of almost G-richness can be introduced by using the definition of G-defect of a finite
word. For more details the reader can consult [15].

3 Examples of G-rich words

3.1 Generalized Thue–Morse words

For a given integer base b > 1 and an integer m > 1, the number sb(n) denotes the digit sum of
the expansion of number n in the base b. The generalized Thue–Morse word tb,m is defined by

tb,m =
(
sb(n) mod m

)∞
n=0

.

Thus, the alphabet of tb,m is A = Zm = {0, . . . ,m− 1}.
In this notation the classical Thue-Morse word uTM equals t2,2. It is readily seen that tb,m is a
fixed point of the substitution ϕ determined by

k 7→ k(k + 1)(k + 2) . . . (k + b− 1) for any k ∈ Zm,

where letters are expressed modulo m. Moreover, tb,m is periodic if and only if b = 1 (mod m).
The language of tb,m is closed under a finite group containing m involutory antimorphisms. This
group is the dihedral group I2(m) and it is generated by antimorphisms Ψx defined for every
x ∈ Zm by

Ψx(k) = x− k for any k ∈ Zm . (1)

In [18], the second author proved that tb,m is I2(m)-rich.



3.2 Complementary-symmetric Rote words

An infinite sequence u over binary alphabet {0, 1} is a complementary-symmetric Rote word
(CSR word) if it has its factor complexity C(n) = 2n and its language L(u) is closed under the
exchange 0 ↔ 1. In [4], the authors proved that Rote words are rich in the classical sense, or
shortly R-rich.

The definition of CSR word forces L(u) to be closed under both antimorphisms over the binary
alphabet R and E and thus Rote words are closed under the group H generated by E and R.
We may apply the following proposition proved in [14].

Proposition 5. Let u ∈ {0, 1}N be a word having its language closed under the group H. If u
is R-rich, then u is H-rich as well.

Consequently, any CSR word is H-rich.

4 Palindromic closures using multiple antimorphisms

Sturmian words belong to words rich in the classical sense. Among them, the most important
role is played by the standard Sturmian words. It is well known that each standard Sturmian
word can be constructed by iterations of the operation of palindromic closure which depends on
the slope of the Sturmian word. The same property holds for standard Arnoux–Rauzy words as
well.

In [7], de Luca and De Luca generalized the notion of standard words considering the set I of
all involutory antimorphisms on A∗ instead of just one fixed antimorphism. We will denote by
IN the set of all infinite sequences over I.

For v ∈ A∗ and ϑ ∈ I, we denote vϑ the shortest ϑ-palindrome having a prefix v. For example,
(01101)E = 01101001, where E is the antimorphism on binary alphabet defined by E(0) = 1
and E(1) = 0.

Definition 6. Let Θ = ϑ1ϑ2ϑ3 . . . ∈ IN and ∆ = δ1δ2δ3 . . . ∈ AN. Denote

w0 = ε and wn =
(
wn−1δn

)ϑn

for any n ∈ N, n ≥ 1.

The word
uΘ(∆) = lim

n→∞
wn

is called a generalized pseudostandard word with the directive sequence of letters ∆ and the
directive sequence of antimorphisms Θ.

Let us stress that the definition of uΘ(∆) is correct as wn is a prefix of wn+1 for any n. Moreover,
if Θ = Rω, the word uΘ(∆) is standard in the usual sense.

Example 7. Consider the directive sequence of letters ∆ = 0(101)ω and the directive sequence
of antimorphisms Θ = (RE)ω. Then

w0 = ε

w1 = 0R = 0

w2 = (01)E = 01

w3 = (010)R = 010

w4 = (0101)E = 0101

w5 = (01011)R = 01011010



w6 = (010110100)E = 010110100101

...

The authors of [7] proved that the famous Thue–Morse word uTM is a generalized pseudostan-
dard word with directive sequences

∆ = 01ω and Θ = (ER)ω .

The article [11] is devoted to the generalized Thue–Morse words. As already mentioned, they
are I2(m)-rich, where I2(m) is the group generated by anitmorphisms Ψx described by (1). We
proved the following theorem.

Theorem 8. The generalized Thue-Morse word tb,m is a generalized pseudostandard word if
and only if b ≤ m or b mod m = 1. If this is the case, then the corresponding sequences ∆
and Θ are

∆ = 0
(

12 . . . (b− 1)
)ω
∈ ZN

m and Θ =
(

Ψ0Ψ1 . . .Ψm−1

)ω
∈ I2(m)N .

In [5] pseudostandard words over binary alphabet are studied and then the results are applied
to standard CSR words. Let us recall that a CSR word u is standard, if both 0u and 1u are
CRS words too. The authors of [5] proved

Theorem 9. For any standard complementary-symmetric Rote word u there exist Θ ∈ {E,R}N
and ∆ ∈ {0, 1}N such that u = uΘ(∆).

The key idea used in the proof of the previous theorem is the connection between standard CSR
words and standard Sturmian words. Rote in [16] deduced the following theorem.

Theorem 10. An infinite word u = u0u1u2 . . . over the alphabet {0, 1} is a complementary-
symmetric Rote word if and only if the word v = v1v2v3 . . . defined by vi = ui−1 + ui mod 2 for
each i = 1, 2, . . . is a standard Sturmian word.

The operation vi = ui−1 + ui mod 2 applied to a H-rich Rote word gives us R-rich Sturmian
word. The same observation holds true for the Thue-Morse word uTM , which is H-rich. After
application of the operation we get the period doubling word uPD, which is R-rich. The period
doubling word can be defined as the fixed point of the substitution ϕPD determined by 0 7→ 11
and 1 7→ 10.

The previous examples inspired us to investigate relationship between the generalized richness
of words and their images under the operation, which we extended to a larger alphabet as well.

5 The operation S

Let m be an integer greater than 1. In this section we consider the alphabet A = Zm =
{0, . . . ,m− 1} and the operation S : AN → AN defined by

S(w0w1w2 · · · ) = v1v2 . . . , where vi = (wi−1 + wi) mod m for every i ∈ N, i ≥ 1. (2)

First we concentrate on the binary alphabet {0, 1}. In [14], we showed the two following state-
ments.

Theorem 11. Let the language of u ∈ {0, 1}N be closed under the group H = {Id, E,R,ER}.
The word u is H-rich if and only if S(u) is R-rich.



Theorem 12. Let u ∈ {0, 1}N be a uniformly recurrent word. If u is almost R-rich, then for
all k > 0 the word Sk(u) is almost R-rich.

The multiliteral alphabet Zm allows many finite groups generated by involutory antimorphisms.
We restrict our attention to the groups I2(m). The reason is simple: we have examples of G-rich
words only for such groups, namely the generalized Thue–Morse words. We demonstrate that
at least for these words the mapping S transforms a G-rich word to an almost G′-rich-word.

We focus on images of tb,m by S with parameters b ≥ 3 and m ≥ 3. We denote by

I ′2(m) the group generated by the antimorphisms {Ψ2y : y ∈ Zm}.

If m is odd, then I ′2(m) = I2(m), if m is even, then I ′2(m) is isomorphic to I2(m2 ).

In [14] we demonstrated a weaker multiliteral analogue of Theorem 11.

Theorem 13. Let m, b ∈ Z such that m ≥ 3 and b ≥ 3.

1. The word S(tb,m) is almost I ′2(m)-rich.

2. If m or b is odd, the word S(tb,m) is I ′2(m)-rich.

Iterating the operation S one can produce (almost) G-rich words for different groups G as
illustrated by the following examples.

Example 14. Let b ∈ N, b ≥ 2 and S be the operation defined for the alphabet Z4. Then

• t2b+1,4 is an infinite word over the alphabet {0, 1, 2, 3} and it is I2(4)-rich.

• S(t2b+1,4) is an infinite word over the binary alphabet {1, 3} and it is H-rich (here H stands
for the group generated by the both involutory antimorphisms over the binary alphabet
{1, 3}).

• S2(t2b+1,4) is an infinite word over the binary alphabet {0, 2} and it is R-rich.

• Sk(t2b+1,4) is an infinite word over the binary alphabet {0, 2} and it is almost R-rich for
any k ∈ N, k ≥ 2.

Example 15. Let b ∈ N, b ≥ 2 and S be the operation defined for the alphabet Z2. Then

• t2b+1,2 is an infinite binary word and it is H-rich.

• S(t2b+1,2) is an infinite binary word and it is R-rich.

• Sk(t2b+1,2) is an infinite binary word and it is almost R-rich for any k ∈ N, k ≥ 2.

6 Binary projections

The examples concluding the previous section provided us a new class of binary words which are
H-rich and also a new class of binary R-rich words, i.e., words rich in the classical sense. These
words originated in the generalized Thue–Morse words. In this section we restrict ourselves
again to a binary alphabet and we describe a procedure how to construct a new class of H-rich
and R-rich words. Paradoxically, the procedure exploits ternary Arnoux-Rauzy words.



Definition 16. Let A = {A,B,C} be an alphabet and x ∈ A. A morphism ζ : A → {0, 1}
defined by

ζ : a 7→

{
0 if a 6= x,

1 otherwise.

is called binary projection over A.

As a binary projection depends on the choice of x ∈ A, we have 3 distinct binary projections
over A. The procedure we promised to give is based on the following statements which can be
found in [14].

Theorem 17. Let u be an Arnoux–Rauzy word over the ternary alphabet A = {A,B,C}, ζ be a
binary projection over A and S be the operation defined by (2) for the parameter m = 2. Then

1. the binary word ζ(u) is R-rich;

2. any preimage of ζ(u) by S is H-rich;

3. the image of ζ(u) by S is R-rich.

7 Conclusions

We introduced the classical palindromic richness in the broader context of G-richness and demon-
strated that it can provide other fruitful points of view at this problem. However, it remains
to solve the main question: Does there exist a G-rich word for any finite group G generated by
involutory antimorphisms over A∗? We expect a positive answer.

Moreover, we expect that there exist more operations analogous to the operation S which map
G′-rich words to G′′-rich words. To find them we need to have at our disposal more exam-
ples of G-rich words for different groups G. Because of this task, we are convinced that the
generalized palindromic closure as introduced by de Luca and De Luca deserves much more
attention. Although language of generalized pseudostandard word is closed under a group G
generated by antimorphisms occurring in the directive sequence Θ, unlike the classical richness
and surprisingly, these words are not necessarily G-rich.
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