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Abstract

Two words u, v ∈ Σ∗ are abelian equivalent, if the number of occurrences of a in u is equal
to that of v for all letters a ∈ Σ. The abelian complexity function Pab

w of an infinite word w
assigns to each n ∈ N the number of abelian equivalence classes of factors of length n. In this
paper, we study the asymptotic growth of the abelian complexity of fixed points of binary
morphisms. From a result of B. Adamczewski in 2003 concerning the balance function of
words, we extract a full description of upper bounds of the asymptotic abelian complexity of
primitive pure morphic words. We obtain a complete characterization of the tight upper and
lower bounds of the asymptotic abelian complexity for non-primitive morphic binary words,
completing the description of tight upper bounds for binary morphisms.

1 Introduction

The factor complexity function Pw of an infinite word w ∈ ΣN counts, for each n ∈ N, the
number of distinct factors of w of length n. The notion has turned out to be a fundamental one,
as shown by the theorem of M. Morse and G. A. Hedlund in [10] which characterises ultimately
periodic words to be exactly the words admitting P(n0) ≤ n0 for some n0 ∈ N. For a survey
on factor complexity we refer the reader to [3]. This notion has spawned other complexity
functions of infinite words, see for instance [12, 8, 13]. The topic discussed in this work is the
abelian complexity Pab of infinite words. The notion is close to that of the balance of infinite
words and, in the case of binary words, they are essentially the same. Using this relation,
the work of E. M. Coven and G. A. Hedlund in [4] can be translated into a characterisation
of periodic words to be exactly the words for which Pab(n0) = 1 for some n0 ∈ N. Though
the abelian complexity is a natural one, the study was formally initiated only recently by G.
Richomme, K. Saari, and L. Q. Zamboni in [12].

The topic of this paper is the asymptotic abelian complexity of pure morphic words. As the
asymptotic factor complexity of pure morphic infinite words is completely known by the result
of J. J. Pansiot in [11] (see also [3]), it is natural to turn to other complexity classifications of
such an important class of words. For example, B. Adamczewski in [1] gives a full description
of the asymptotic upper bound behaviour of the balance function of primitive pure morphic
words over any alphabet. The work on describing the abelian complexity for pure morphic
words was initiated in [2], where F. Blanchet-Sadri and N. Fox, among other things, fully
describe the asymptotic abelian complexities of uniform pure morphic binary words, apart from
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one case of lower bound behaviour. As the case of the balance function of primitive binary
morphisms is essentially the same as the abelian complexity, we can extract from the result of
[1], a classification of the upper abelian complexity of primitive pure morphic words. Note that
the classification only holds for the lim sup behaviour. We study the case of non-primitive pure
morphic words, which also was briefly and partially covered in [2], and we obtain a complete
description of the asymptotic upper and lower bound abelian complexity. In the most interesting
case of uniformly recurrent fixed points of non-primitive binary morphisms, we use the notion
of a descendant or a derived word of a uniformly recurrent word in order to apply the result of
[1] concerning the balance function of infinite words.

2 Preliminaries and notation

An alphabet is denoted by Σ, the set of finite words over Σ by Σ∗, and the set of infinite words
over Σ by ΣN. The empty word is denoted by ε. We fix the binary alphabet to be {a, b}. The
length of a word w is denoted by |w|. For a non-empty u ∈ Σ∗ and w ∈ Σ∗ we denote by |w|u
the number of occurrences of u in w. The set of factors of an infinite word w ∈ ΣN is denoted
by F (w) and factors of length n by Fn(w). For a non-empty factor u of w ∈ ΣN we denote the
set of complete first returns to u in w by <u(w):

<u(w) = {x ∈ F (w) | x = ux1 = x2u, x1, x2 ∈ Σ∗, |x|u = 2}.

The factors of w in <u(w)u−1 are called first returns to u in w. See [14] for more on the notion.

A mapping ϕ : ∆∗ → Σ∗ for two alphabets ∆ and Σ is a morphism, if ϕ(uv) = ϕ(u)ϕ(v) for
all u, v ∈ ∆∗. A morphism extends naturally to infinite words, and we will not distinguish
between the extension and the morphism itself. A morphism is called primitive, if there exists
a number n0 ∈ N such that for all letters a, b ∈ Σ we have |ϕn0(a)|b ≥ 1. For an enumeration
of the alphabet Σ = {a1, a2, . . . , an} and a morphism ϕ : Σ∗ → Σ∗, the incidence matrix of ϕ
is the matrix Aϕ =

(
|ϕ(aj)|ai

)
i,j∈{1,...n}. In other words, the jth entry of the ith row equals the

number of occurrences of ai in ϕ(aj). For such a morphism ϕ we have Aϕn = Anϕ for all n ∈ N.

The abelian complexity function of an infinite word w assigns to each n ∈ N the number of
abelian equivalence classes among the factors of w of length n. The abelian complexity function
of w ∈ ΣN is denoted by Pab

w . In general, Pab
w can be strongly fluctuating (see [9]), and it might

be rather hard to obtain closed formulas for the abelian complexity of a given word. We are thus
interested in the asymptotic growth of the upper and lower bounds, so we define the functions
Uab
w and Lab

w to be Uab
w (n) = max{Pab

w (m) | 0 ≤ m ≤ n} and Lab
w (n) = min{Pab

w (m) | m ≥ n}.
For a word w ∈ ΣN and a letter a ∈ Σ, we define maxw,a(n) = max{|u|a | u ∈ Fn(w)} and
minw,a(n) = min{|u|a | u ∈ Fn(w)}. We omit w from the subscript when it is clear from
context. Note that for any w ∈ {a, b}N, we have Pab

w n = maxw,b(n)−minw,b(n)+1 for all n ∈ N.

For two functions f, g : N→ N we use the notations f(n) = O(g(n)) if there exists an n0 ∈ N and
a constant C such that f(n) ≤ Cg(n) for all n ≥ n0, f(n) = Ω(g(n)) if lim supn→∞ f(n)/g(n) >
0, and f(n) = Θ(g(n)) if there exists an n0 ∈ N and two constants C1 and C2 such that
C1g(n) ≤ f(n) ≤ C2g(n) for all n ≥ n0. If f(n) = O(g(n)) and f(n) = Ω(g(n)) then we denote
this by f(n) = (O ∩ Ω)(g(n)). Finally, we denote by f(n) = o(g(n)), if limn→∞ f(n)/g(n) = 0.

3 Main results

We invoke a result from [1] concerning a concept similar to that of the abelian complexity.
We define balance function Bw of an infinite word w ∈ ΣN as follows. For all n ∈ N define



Bw(n) = max{maxw,a(n)−minw,a(n) | a ∈ Σ}. For a binary word, the functions are almost the
same, that is, Bu(n) = Pab

u (n)− 1 for all n ∈ N.

We are now ready to state the main result used in this work. In the following, let σ : Σ → Σ∗

be a primitive morphism such that σ(a) = ax for some x ∈ Σ∗. It then admits a fixed point
u = σω(a). In [1] B. Adamczewski classifies the tight upper bounds of the asymptotic balance
function of primitive pure morphic words. The upper bound of a primitive pure morphic word
depends on the eigenvalues of the incidence matrix and, in some cases, weights of admissible
paths in the prefix automaton corresponding to the morphism and word itself. Summarizing
this result, a primitive pure morphic word u ∈ ΣN can have Bu(n) = (O ∩ Ω)(1), Bu(n) =
(O∩Ω)((log n)αnlogθ θ2), or Bu(n) = (O∩Ω)((log n)α) for some θ, θ2 ∈ R, θ > 1, θ > θ2 > 0 and
α ∈ N, 0 ≤ α ≤ |Σ| − 1. For more details, we refer the reader to [1].

The asymptotic growth of Uab
u for primitive morphic binary words u ∈ {a, b}N are easy to

extract from the result. For example, in the above, α = 0 always. Summarizing this, u can have
Pab
u (n) = Θ(1), Uab

u (n) = Θ(nlogθ |θ2|), or Uab
u (n) = Θ(log n).

We expand this result to all binary morphisms. Let ϕ be a non-primitive morphism admitting
an iterated fixed point ϕω(a) = y. Note that if |ϕ(a)|b ≥ 1, then ϕ(b) ∈ b∗ for ϕ to be non-
primitive. Moreover, for y to be aperiodic, we have to have |ϕ(a)|b ≥ 1. Indeed, it can be shown
that y ∈ ΣN is ultimately periodic if and only if one of the following holds: ϕ(a) ∈ {a+, ab+},
ϕ(b) = ε, or |ϕ(b)|b = 1, ϕ(a) ends with a and |<a(ϕ(a))| = 1.

By the theorem of E. Coven and G. A. Hedlund [4], an infinite word w is periodic if and only
if Pab

w (n) = 1 for some n ∈ N. It is a straightforward consequence, that Pab
w (n) = Θ(1) for

ultimately periodic words w. We are thus only interested in aperiodic words.

Theorem 3.1. Let ϕ and y be as above, and suppose that y is aperiodic. Then the abelian
complexity is one of the following.

i) If |ϕ(b)|b = 1 and ϕ(a) ends in a, then Laby (n) = Θ(1) and Uab
y (n) = Θ(log n),

ii) if |ϕ(b)|b = 1 and ϕ(a) ends in b, then Pab
y (n) = Θ(n),

iii) if |ϕ(b)|b > 1, |ϕ(b)|b > |ϕ(a)|a, then Pab
y (n) = Θ

(
nlog|ϕ(b)|b

|ϕ(a)|a
)

iv) if |ϕ(b)|b > 1, |ϕ(b)|b = |ϕ(a)|a, then Pab
y (n) = Θ(n/ log n),

v) if |ϕ(b)|b > 1, |ϕ(b)|b < |ϕ(a)|a, then Pab
y (n) = Θ(n).

Remark 3.2. In [2], F. Blanchet-Sadri and N. Fox give a brief sketch of proof for the items ii)–v).
Nonetheless, we inspect these cases as well.

4 Sketch of the proof of Theorem 3.1

In this section we give a sketch of the proof of Theorem 3.1. The most interesting case of
Theorem 3.1 is item i) and we focus on the proof of it more than the others. First we give a
very brief sketch of items ii)–v) as the proofs are fairly straightforward.

We first we observe that in each of these cases bn ∈ F (y) for all n ∈ N. This implies that
Pab
y (n) = n−minb(n) + 1 for all n ∈ N and, in particular, Pab

y (n) is monotonically increasing.

The second observation is that miny,b(|ϕn(a)|) = |ϕn(a)|b. This gives a direct method of com-
puting Pab

y for certain lengths. The growth of the sequence of numbers |ϕn(a)| is compared to

that of Pab
y (|ϕn(a)|) in each of the items ii)–v): In item iii), the growth of the sequences are

|ϕ(b)|nb versus |ϕ(a)|na , in item iv) the ratio is nρn versus ρn for a ρ > 1, and in item v) we have



|ϕn(a)|n versus |ϕn(a)|n. The property of Pab
y being monotonically increasing then gives valid

bounds for Pab
y rather than to the upper or lower bound functions Uab

y and Lab
y .

We then proceed to the case of item i). It is more challenging and interesting than the other
items. First of all, the abelian complexity function is fluctuating, so it is not enough to find a
sub-sequence for which we know the behaviour. This is why we need derived words, for which
the result of Adamczewski comes into play.

In the following, we suppose that ϕ is a morphism and y the fixed point as in item i) of
Theorem 3.1. The aim of this section is to prove the claim of item i), that is, Lab

y (n) = Θ(1)

and Uab
y (n) = Θ(log n). For the first, it suffices to find a monotone sequence (mn)n∈N such that

the values Pab
y (mn) are bounded.

Lemma 4.1. Let ϕ and y be as above. Then y is linearly recurrent.

Remark 4.2. Linearly recurrent words admit uniform frequencies, in particular, the frequencies
λa, λb of the letters a and b, resp., exist. In the case of item i) it is easy to calculate λb:

λb = |ϕ(a)|b
|ϕ(a)|−1 . Note that 1 6= λb 6= 0. See [6] for references on linearly recurrent words.

Proposition 4.3. Let ϕ and y be as stated above. Then Laby (n) = Θ(1).

Proof. We have a 7→ abk1abk2 · · · abkma and b 7→ b where ki ≥ 0 for all i = 1, . . . ,m. Let us fix
n ≥ 1 and denote by un = ϕn(a). We shall study the factors of length |un|. First of all, as
ϕ(b) = b, it is easy to see that y =

∏∞
i=0 ab

si where si ∈ {k1, . . . , km} for all i ∈ N. Furthermore,
y = ϕn(y) =

∏∞
i=0 unb

si .

Consider then any factor v of length |un|. It is then a factor of the word unb
sun for some

s ∈ {k1, . . . , km}. Then v is of form qbt, qbsq, or btq for some prefix p and suffix q of w and
some t ∈ {0, . . . , s}. Then un has the minimal number of b’s among factors of the same length.
Furthermore |v|b ≤ |u|b + kmax, where kmax = max{k1, . . . , km}, for any v ∈ F|un|. The claim
follows, as maxb(|un|)−minb(|un|) + 1 ≤ kmax + 1 for any n ∈ N.

Then for the asymptotics of Uab
y (n). The method is to show first that Uab

y (n) = O(log n) and then

giving a sequence of indices (mn)n∈N that grow exponentially, while the sequence
(
Pab
y (mn)

)
n∈N

grows linearly.

4.1 On descendants of uniformly recurrent words

First we discuss the notion of a descendant or a derived word of a uniformly recurrent word.
The notion was introduced by F. Durand in [5] and by C. Holton and L. Q. Zamboni in [7],
independently.

Let ϕ : Σ→ Σ∗ be a morphism admitting a fixed point ϕω(a) = y. Furthermore, suppose that y
is uniformly recurrent, or, equivalently, <v(y) is finite for each v ∈ F (y). For any prefix u of y,
we define a finite alphabet ∆ with |∆| = |<u(y)|. Let then π : ∆ → <u(y) be a bijection. The
mapping π then extends to a morphism in a natural way. A descendant of y with respect to
u is the infinite word Du(y) obtained by coding the first returns into the corresponding letters
(there is no problem with this, we identify the occurrences of u and we can then see the returns
between the occurrences and code them, etc.). Since y is uniformly recurrent, α is also uniformly
recurrent. We then have π(Du(y)) = y.

The following is a modification of Proposition 5.1 in [5]. The proof of this is essentially the
same, as suggested by J. Peltomäki (personal communication).



Proposition 4.4. Let y = γω(a) be a uniformly recurrent pure morphic word and u a finite
prefix of y. Let Du(y) be the descendant of y with respect to u. Then Du(y) is a pure morphic
word fixed by a primitive morphism.

We are actually more interested in the construction of the primitive morphism, denoted by µ,
mentioned above. The morphism µ is defined for each letter a ∈ ∆ to be µ(a) = π−1γπ(a).
The reason we are interested in such descendants is that the balancedness of them is known by
Adamczewski’s classification in [1]. It will then help us establish an upper bound for the lim sup
growth of the abelian complexity of y.

4.2 The asymptotic growth of Uab
y

Let now ϕ and y = ϕω(a) be as in item i) in Theorem 3.1. Let Da(y) be the descendant of y
with respect to the letter a and µ the primitive morphism fixing it. As was noted during the
proof of Proposition 4.3, the first returns to a in y can directly be seen from ϕ(a). Also, as in
any binary word, the returns to a in ϕ(a) are of form abi for some i ∈ N. We thus take the
alphabet ∆ to be {ai | abi ∈ <a(y)}. For ease of notation, we denote by d = |∆|.
We then have the morphism π : ∆ → {a, b}∗ defined on the letters by π(ai) = abi. The
construction of µ then gives us µ(ai) = π−1ϕπ(ai) = π−1ϕ(abi) = π−1(ϕ(a)bi) = π−1(ϕ(a)a−1)ai
for all ai ∈ ∆. Note that this implies that µ is a uniform morphism, i.e. |µ(a)| = |µ(b)| for all
a, b ∈ Σ. The length of µ is |µ| = |π−1(ϕ(a)a−1)|+ 1 = |ϕ(a)|a. Moreover, the images of letters
differ only at the last letter, that is, if we denote π−1(ϕ(a)a−1) = p, then µ(ai) = pai for all
ai ∈ ∆.

The incidence matrix Aµ is of special form Aµ =
(
Ψ(p)T | Ψ(p)T | · · · | Ψ(p)T

)
+Id×d = A+Id×d,

where Ψ(p) is the Parikh vector of p, Id×d is the d× d identity matrix, and A is a d× d matrix,
where each column is the same vector Ψ(p)T . Note that since all the first returns to a occur in
ϕ(a), all the entries of Aµ are positive.

We are fortunate that enough information of the values θ, θ2, and α mentioned in the beginning
of section 3 can be extracted from Aµ with ease. Indeed, it can be shown that Bu(n) = O(log n).
This is enough for our considerations.

Lemma 4.5. Let ϕ and y be as above. Then Uab
y (n) = O(log n).

Proof. Let Da(y), µ : ∆ → ∆ and π : ∆ → Σ∗ be as discussed above. Let u, v ∈ Fn(Da(y)) be
such that |π(u)| − |π(v)| is maximal. Recall that π(ai) = abi for all ai ∈ ∆, so that |π(u)|a =
|π(v)|a. We then have, by the above considerations,

∣∣|π(u)| − |π(v)|
∣∣ =

∣∣|π(u)|b − |π(v)|b
∣∣ =

∣∣∣∣∣∣
∑
ai∈∆

i(|u|ai − |v|ai)

∣∣∣∣∣∣ ≤
∑
ai∈∆

i
∣∣|u|ai − |v|ai∣∣ = O(log n).

Let r = |π(u)| − |π(v)|. Then there exists a factor x ∈ Fr(y) such that π(v)x ∈ F (y). We have
|x|b = λbr + o(r), where λb < 1 is the uniform frequency of b given in Remark 4.2 in y. Now
|π(u)|b − |π(v)x|b = r − λbr + o(r) = Θ(r) since λb 6= 1 6= λa. Note that maxb(|π(u)|)− |π(u)|b
is bounded by a constant and |π(v)x|b −minb(|π(u)|) is bounded by o(r).

Since r = O(log n) and |π(u)| = Θ(n), we have Pab
y (n) = O(log n). The difference max{|π(u)| |

u ∈ Fn+1(y)} −max{|π(v)| | v ∈ Fn(y)} is also bounded by a constant, so the estimations hold
for all n ∈ N.

Proposition 4.6. Let ϕ and y be as in item i) of Theorem 3.1. Then Uab
y (n) = Θ(log n).



Proof. Lemma 4.5 already gives us Uab
y (n) = O(log n). The proof follows once we establish

such growth. Consider thus a factorization ϕ(a) = xauay for some x, u, y ∈ {a, b}∗. Let then
u0 ∈ F (y) be of form u0 = au′a for some u′ ∈ F (y). Let us then define un, n ≥ 0 recursively as
follows: un+1 = x−1ϕ(un)y−1. Note that un is defined for all n ∈ N, since un always begins and
ends with a and so ϕ(un) always begins with x and ends with y.

Let us now compute |un| and |un|b for each n. For this, we have the following. Let Aϕ be the
incidence matrix of ϕ. Denote by Ψx,y(un) = (|un|a, |un|b,−|xy|a,−|xy|b)T and consider the
4× 4 block matrix

A =

(
Aϕ I2×2

0 I2×2

)
,

where 0 = 02×2 is the 2 × 2 zero matrix. It is easy to see that AnΨx,y(u0) = Ψx,y(un) for all
n ∈ N. By denoting fa = |ϕ(a)|a and fb = |ϕ(a)|b, we have

Ψx,y(us) = AsΨx,y(u0) =

(
As

ϕ

∑s−1
i=0 A

i
ϕ

0 I2×2

)
Ψx,y(u0) =


fsa 0

fs
a−1

fa−1 0

fb
fs
a−1

fa−1 1 fb
fs
a−1−(fa−1)s

(fa−1)2 s

0 0 1 0
0 0 0 1

Ψx,y(u0).

for all s ∈ N. We are now able to calculate the desired values of |us|a = fsa |u0|a− fsa−1
fa−1 |xy|a and

|us|b = fb
fsa−1
fa−1 |u0|a + |u0|b − fb f

s
a−1−s(fa−1)

(fa−1)2
|xy|a − s|xy|b. We then compare the latter to the

average number of b’s, λb|us|, where λb = fb
fa+fb−1 is as in Remark 4.2. Now |us|b− fb

fa+fb−1 |us| =
c1 + c2s where c1 and c2 are constants after u0, x, and y are fixed. If we choose x and y such
that ϕ(a) = xabkminay, where kmin = min{ki | 0 ≤ i ≤ m}, then c2 = fb|xy|a−(fa−1)|xy|b

fa+fb−1 6= 0.

This is true, since c2 = 0 if and only if fb
fa−1 6=

|xy|b
|xy|a where the left hand side is the average

number of b’s in a first return to a in ϕ(a). Since |<a(ϕ(a))| ≥ 2, the average cannot equal the
minimal. Now (|un|) grows exponentially while

(
Pab
y (|un|)

)
has at least linear growth, which

gives the claim.

5 Conclusions

The main focus of the work is on pure morphic binary morphisms. The main reason for this,
was to complete the description of the possible asymptotic abelian complexities of such words.
Future directions of research include describing the lower asymptotic abelian complexity function
for primitive binary morphisms, as well as studying the case of larger alphabets.

The difficulty in the case of lower bound asymptotics for primitive binary words is that there
are words for which abelian complexity is fluctuating (e.g. a 7→ aba, b 7→ abb, see [2]) and it
is not clear, if B. Adamczewski’s technique used in [1], can be modified to obtain lower bound
asymptotics. The techniques used in this work cannot be extended to larger alphabets, since
the abelian complexity cannot be directly seen from the balance function. On the other hand,
the following is proved in [12]. For a word w ∈ ΣN, the function Pab

w is bounded, if and only if
Bw is bounded. Thus the case of primitive words with bounded balance in the classification of
Adamczewski have bounded abelian complexity.
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