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Abstract

We push further a recently proposed method for studying synchronizing automata and
Černý’s conjecture, namely, the synchronizing probability function. In this method, the
synchronizing phenomenon is reinterpreted as a Two-Player game, in which the optimal
strategies of the players can be obtained through a Linear Program. Our analysis will mainly
focus on the concept of the triple rendezvous time, the shortest length of a word mapping
three states onto a single one. It represents an intermediate step in the synchronizing process,
and is a good characterization of its overall length.

Our contribution is twofold. First, using the synchronizing probability function and prop-
erties of linear programming, we provide a new upper bound on the triple rendezvous time.
Second, we disprove a conjecture on the synchronizing probability function by exhibiting a
family of counterexamples. We discuss the game theoretic approach and possible further
work in the light of our results.

1 Synchronizing automata and Černý’s conjecture

An automaton is called synchronizing if there exists a sequence of letters which maps all the
states onto a single one (see next subsection for rigorous definitions). Figure 1 shows an example
of such an automaton.

Figure 1: A synchronizing automaton on four states with two letters, a and b. The sequence of
letters abbbabbba leads to state 1, whatever the initial state is.
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Synchronizing automata have been the source of intense and exciting research in the past 50
years. The interest for the subject appeared in computers and relay control systems in the 60s.
The aim was to restore the control over these devices without knowing their current state (see
[13], [10]). In the 80s and 90s, the use of synchronizing automata spread through applications in
robotics and industry. More recently, synchronizing automata have found biological applications.
The survey [19] gives a more detailed overview of synchronizing automata applications.

In this paper, we represent automata with matrices. In this representation, a set of states S ⊂ Q
of an automaton (with n possible states) is represented by its characteristic vector, i.e. a 1× n
vector x ⊂ {0, 1}n for which xi = 1 if state i ∈ S, and 0 otherwise. A state is represented
by such a binary vector with a single entry equal to one. The letters of the automaton will
be represented as n × n matrices, such that applying the letter a represented by matrix A to
an automaton with characteristic vector x is equivalent to computing the product xA. More
precisely:

A (deterministic, finite state, complete) automaton (DFA) is a set of m column-stochastic ma-
trices Σ ⊂ {0, 1}n×n (where m,n are respectively the number of letters in the alphabet, and the
number of states of the automaton). That is, the matrices in Σ have binary entries, and they
satisfy AeT = e, where e is the 1× n all-ones vector. We write Σt for the set of matrices which
are products of length t of matrices taken in Σ. We refer to these matrices as words of length t.

Definition 1. An automaton Σ ⊂ {0, 1}n×n is synchronizing if there is a finite product A =
Ac1 . . . AcW : Aci ∈ Σ and an index 0 < i ≤ n which satisfy

A = eTi e,

where ei is the ith standard basis vector (1× n).
In this case, the sequence of letters c1 . . . cW is said to be a synchronizing word.

Jan Černý stated his conjecture on DFA in 1964 [6] [7]. Although it is very simple in its
formulation, it has not been proven since then. The conjecture is the following:

Conjecture 1. Černý’s conjecture, 1964 [7] Let Σ ⊂ {0, 1}n×n be a synchronizing automa-
ton. Then, there is a synchronizing word of length at most (n− 1)2.

In [6], Černý proposes an infinite family of automata attaining this bound, for any number
of states. The automaton represented in Figure 1 is the representative of this family on four
states. Indeed, its smallest synchronizing word is abbbabbba, which is composed of nine letters.
The examples of synchronizing automata attaining this bound, or even getting close to it for
a large number of states, are very infrequent (some families of such automata are developed
in [1]).

Since its formulation, Conjecture 1 has been the subject of intense research. Up to now, the
best upper bound on the length of a minimal synchronizing word for an automaton of size n
is even not quadratic, but is equal to (n3 − n)/6 [14] [15]. This bound in the general case has
been holding for more than 30 years. Conjecture 1 has been proven to hold for subfamilies of
automata [2,3,5,6,8,9,12,18]. Very recently, several attempts to introduce a probabilistic point



of view to this problem have appeared in the literature (see [17] for a recent presentation of the
main ideas). A state of the art overview is presented in [19].

Our work is based on the synchronizing probability function, introduced in 2011 [11]. This tool
allows to reformulate the synchronizing property in terms of game theory. It is promising in that
it offers a connection with an a priori unrelated concept, which relies on a strong theoretical
basis (see [4], [16]).

In the next section, we will introduce the concept of triple rendezvous time, and obtain an upper
bound on this value, based on the synchronizing probability function. In Section 3, we will
describe a particular family of automata which, amongst other interesting properties, refutes
a recent conjecture on the synchronizing probability function. We will not redefine here the
concept of synchronizing probability function, which can be found in [11], nor give the full
proofs of the results, which will appear in later publications.

2 Upper bound on the triple rendezvous time

In what follows, the weight of a vector is the number of its non-zero elements. As defined in [11],
A(t) is the bloc-row matrix containing all the matrix representations of words of length at most
t of the automaton considered.

Definition 2. Let us consider a synchronizing automaton
∑

. We define the triple rendezvous
time T3,

∑ as the smallest integer such that A(T3,
∑) contains a column of weight superior or

equal to 3.

In other words, it is equal to the length of the smallest word for which one of the states has
a pre-image of cardinality three. In the following, we will use T3 for T3,

∑ when there is no
ambiguity on the automaton.

Although the concept of triple rendezvous time is a very natural concept, we are not aware of
any attempt to bound its value for synchronizing automata.

We will obtain an upper bound on the triple rendezvous time by using the synchronizing prob-
ability function. See [11] for a more detailed overview of this function.

Our motivation for studying T3 is that there are empirical evidences that its value is correlated
with the length of a shorter synchronizing word. Indeed, for the known automata achieving
the bound of Conjecture (1), T3 is around n, and the SPF is growing close to linearly. These
considerations led to the following conjecture, which states that, although the SPF can deviate
from a linear growth, at time equal to multiples of (n + 1), it has to catch up with the slope
corresponding to Conjecture 1:

Conjecture 2. in [11] (Conjecture 2) For any synchronizing automaton A and for any
j ≥ 1, j ≤ n− 1,

k(1 + (j − 1)(n + 1)) ≥ j/(n− 1).



This conjecture would imply Černý’s conjecture [11]. It also would imply that the triple ren-
dezvous time for an automaton on n nodes is lower or equal to n + 2 ( see [11], section 4). We
will see later that it is not the case.

We now present an upper bound on T3 (see GandALF 2014 proceedings for the proofs). First,

it is not difficult to see that in a synchronizing automaton
∑

with n states, T3,
∑ ≤ n(n−1)

2 + 1.

Indeed, there are n(n−1)
2 possible pairs of states, and therefore as A(t) grows and has to evolve

at each step, we obtain our result. However, it is possible to improve this bound:

Theorem 1. In a synchronizing automaton with n states, T3 ≤ (n)(n+4)
4 −Parity n

4 , with Parity n =
0 if n is even, and 1 if n is odd.

Proof. (sketch) We have the following lemma:

Lemma 1. if t < T3, then k(t) can only take the values 2/(n+ s), 0 ≤ s ≤ n− 1, and this value
cannot be optimal at more than b(n− s)/2c+ 1 steps.

This allows us to derive a better bound on T3 by counting all the possible steps before T3:

n−1∑
s=0

(b(n− s)/2c+ 1) =

n∑
s=1

(bs/2c+ 1) =
1

2

(
n−1∑
l=0

l

)
− 1

2
dn

2
e+ n =

(n)(n + 4)

4
− Parity n

4

3 Counterexample to a conjecture on the synchronizing proba-
bility function

In this section, we present an infinite family of automata which are counterexamples to Conjec-
ture 2. It also provides us with a lower bound on the maximum value of the triple rendezvous
time of an automaton of size n for every odd number n ≥ 9.

Figure 2: Automaton on 9 nodes with k(11) = 2/9.



Figure 3: Representation of the automata of this family on 11 and 13 states

The automaton on nine nodes and two letters represented in Figure 2 is the first representative of
the family. Indeed, its synchronizing probability function with t = 11 is k(11) = 2/9. However,
for j = 2 and n = 9, Conjecture 2 states that k(11) ≥ 2/8, and is therefore false. This automaton
also has the particularity that its triple rendezvous time equals 12, which is the number of nodes
plus 3. Indeed, it can be verified that he matrix A(11) contains only columns of weight two. In
addition, for the three initial states 0, 4 and 6 of the automaton, the automaton ends at state
4 after application of the word abbabbababba, which is twelve letters long.

We can now extend this automaton on 9 nodes to an infinite family of automata with an odd
number of nodes. The construction of the automaton on 11 nodes is the following: taking the
same initial structure, we first delete the self loop with label a on node 0, and add node 9 with
a double connection with label a to node 0. Second, we add a self loop of label b on node 9.
Third, we delete the self loop with label b on node 8, and add node 10 with a double connection
with label b to node 8. Fourth, we add a self loop with label a on node 10. This gives us the
automaton on 11 nodes shown in Figure 3. We can do the same process to get to higher steps:
at each step, we delete the self loops on the nodes added in the previous step. Then we add new
nodes connected to them with a double connection labelled with the letter of the deleted loops.
Then we add a self loop labelled with the other letter, as shown in Figure 3.

All the automata of this family are such that T3 = n + 3, and k(n + 2) = 2/n.

4 Conclusion

In this work, we pushed further the study of the synchronizing probability function as a tool
to represent the synchronization of an automaton. Our results are twofold, and somewhat
antagonistic: on the one hand, we managed to prove a non trivial upper bound on the triple
rendezvous time thanks to results on the synchronizing probability function. It shows that
this tool can effectively help in understanding synchronizing automata. On the other hand, we
refuted Conjecture 2, by providing an infinite family of automata for which T3 = n + 3 (with
n the size of the automaton). Conjecture 2 was stated as a tentative roadmap toward a proof
of Cerny’s conjecture with the help of the synchronizing probability function, and in that sense
our conterexample is a negative result towards that direction.

A natural continuation to this research would be to search for the smallest value at which



a column of weight larger than three appears. More precisely to search for bounds on the
”quadruple rendezvous time” and higher steps, since Černý’s conjecture is about the n-uple
rendezvous time. Another research question is how to narrow the gap between n + 3 and n2/4
for the triple rendezvous time, which is in our view interesting per se.
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