
Consensual languages: a simple parallel machine model∗

Stefano Crespi Reghizzi and Pierluigi San Pietro†

June 20, 2014

Abstract

This paper collects recent results on the consensually regular (CREG) languages, a novel parallel
abstract machine model. The model uses a finite automaton to define the sequential computations,
and a simple matching rule to check that computations are in agreement. At any time, one com-
putation acts as leader for the current transition, and the remaining computations must consent to
the current character the leader has placed. Placing and consenting to the current character are en-
coded by doubling the alphabet with a marked copy. The recognizer ofCREG is a nondeterministic
multi-set machine. After listing the main properties and language family comparisons, we show that
regular languages coincide with the consensual languages based on strictly locally testable computa-
tions. A method for designing consensual languages so that their union is consensual is shown. Open
problems and research directions are listed.

1 Introduction

After the introduction of the family of consensual languages in 2008 [2], the authors have investigated its
properties in a series of works [3, 4, 7, 5, 9, 6, 15, 8, 10]. It is timely to present the main results in a more
unified way, and, in particular, to revisit the properties singularly provedin earlier papers, as corollaries
of the latest results.
Here, we introduce the consensual model by contrast with respect to theclassical finite automata. The
Deterministic Finite Automata (DFA) (and their extensions with unbounded memories) are the funda-
mental abstract model of sequential computations. On the other hand, parallel computations, though they
are fundamental for modern computer applications, lack a real standard model, so that it is worthwhile
to introduce and study new ideas that may lead to interesting models, to be addedto the existing ones.
Our consensual definitions enrich DFAs with parallel computations that “consensually” converge into
a final configuration. Consider an input word, and recall how it is, respectively, recognized by a DFA,
by a Nondeterministic FA (NFA), and by an Alternating FA (AFA). The DFA has just one accepting
(i.e., reaching a final state) computation and zero rejecting ones, the NFA has one or more accepting and
zero or more rejecting computations; and the AFA has one or more accepting and zero rejecting com-
putations. In the model named Consensually Regular (CREG), to recognize a wordx of lengthn, the
abstract machine has up ton accepting computations, such that, for each letterx(1), . . . , x(n), exactly
one computation “places” the letter (i.e., asserts its validity) and the remaining computations consent to
it. The dual behavior placing/consenting is implemented by a DFA that uses a double alphabet, made
by the original alphabet and by a marked (dotted) copy. Such DFA defines a regular language over the
double alphabet, called the base of the language consensually recognised. This device exceeds the power
of finite-state computations, because the number of instantaneous configurations may grow linearly with
the input length. Since a configuration is encoded by a multi-set of DFA states, the device is accordingly
named a multi-set (consensual) machine and belongs to the class of so-calledtoken machines, well-
known through Petri Nets; but the firing rules of the two models are very different. Otherwise, we are
not aware of any abstract machine model similar to consensual machines.
Thus a consensual computation involves tightly synchronized parallel processes, defined by the regular
base language; at any time, one process leads the computation and the others must consent to the choice

∗Work partially supported byPRIN 2010LYA9RH-006“Automi e linguaggi formali: Aspetti Matematici e Applicativi”.
†The authors are with DEIB, Politecnico di Milano and CNR-IEIIT.

proposed by the leader. If leadership is restricted to a finite number of processes, the model degenerates
to DFA. Otherwise the model is a logspace nondeterministic multi-counter machine,which is worth
comparing with other types of automata.

2 The Consensual Model

We start with an intuitive example to show how the consensual model makes useof a FA to perform
parallel coordinated computations which reinforce each other; then we formalize the model.
Consider the NFAA of Fig. 1, where some of the transitions are marked as dashed, and the remaining
solid transitions are colored in red to highlight the distinction. There is a constraint on this marking: for
each lettera and for each stateq

at most one dasheda-labeled transition and at most one solida-labeled transition exit fromq. (1)

A solid transitionqi
a

−→ qj is calledplacing (it placeslettera); a dashed transitionqi
a

99K qj is called
consenting (it consentsto a). We describe the behavior of a non-deterministic, parallel machineMA,
featuring a set of synchronized sequential processes, each one being a finite-state computation ofA.
Thus, each computation starts in the initial state and is in one of the states ofA. MA is called amulti-set
machine, since its configuration is a multi-set of states ofA. Given an inputx ∈ Σ+, MA starts up to
|x| parallel computations, each in the initial stateq1. At each step,MA reads the current input symbola
and makes each sequential computation move (in parallel) to the next state, computed by the transition
relation ofA, for the present state and input symbol. In other words, each (sequential) computation
nondeterministically chooses ana-labeled transition from its current state. This choice must meet at
each step the following global “matching constraint”:

onecomputation performs a placing transition, andall others perform consenting transitions. (2)

These computations are calledmatching. MA accepts whenx has been consumed and each computation
is in a final state ofA. The language accepted by the multi-set machine is called theconsensual language
defined byA.

q1 q2 q4

q3

→ →
a b

b
b

a a b

b

(a) FAA with dashed (consenting) transitions and solid
(placing) ones.

c1 : q1
a

−→ q2
a

99K q2
a

99K q2
b

−→ q4
b

99K q4
b

99K q4

c2 : q1
a

99K q1
a

−→ q2
a

99K q2
b

99K q3
b

99K q3
b

−→ q4

c3 : q1
a

99K q1
a

99K q1
a

−→ q2
b

99K q3
b

−→ q4
b

99K q4

(b) Three matching computations for inputaaabbb.

Figure 1: A multi-set machineMA. MA accepts worda3b3 because (i)A admits the matching computa-
tions of Fig. 1(b), and (ii) at every step, there is exactly one solid (i.e., placing) transition. Therefore the
computations are matching and define an accepting run of machineMA.

Rather than using dashed and solid or colored transitions, it is preferableto identify a consenting tran-
sition by marking with a dot its letter, using the“dotted” copyå, b̊, . . . of the alphabet. This allows a
more abstract definition based on the language recognized byA, instead of the graph ofA. Given a finite
alphabetΣ, let Σ̊ be thedotted(or marked) copy ofΣ. Thedouble alphabetis Σ̃ = Σ̊ ∪ Σ.

We reformulate the preceding example using the double alphabet. LetBA = å∗åa∗̊b∗b̊b∗. This kind
of expression is called a “consensual regular expression”. It is easy to see thatBA is the language
recognized by the above automatonA, modified by dotting the labels of dashed transitions. The modified
version ofA is now a DFA, sinceA meets constraint (1). Therefore,BA can be regarded as the set of
all possible (sequential) computations ofMA, going from the initial to the final state. For instance,
computationc1 above is represented by the wordååab̊b̊b, c2 by åååb̊bb, andc3 by å̊aåbb̊b.

To formalize the matching computations of a multi-set machine, we introduce a partial, symmetrical, and
associative binary operator@ : Σ̃× Σ̃ → Σ̃, calledmatch: defined as follows, for alla ∈ Σ:

a@å = å@a = a, å@å = å, @ is undefined in every other case.

The match is extended to words of equal length as a letter-by-letter application,by assumingǫ@ǫ = ǫ:
for everyn > 1, for all w,w′ ∈ Σ̃n, if, for all positionsi, 1 ≤ i ≤ n, w(i)@w′(i) is defined, then:

w @ w′ =
(
w(1)@w′(1)

)
· . . . ·

(
w(n)@w′(n)

)
. In every other case,w@w′ is undefined.

Hence, the match is undefined on wordsw,w′ of unequal lengths, which cannot in fact represent two
parallel computations in a multi-set machine. Moreover,w@w′ is undefined even when|w| = |w′|, if
there exists a positionj such thatw(j)@w′(j) is undefined, which occurs in three cases: when both
letters are inΣ, corresponding to the situation when two computations try to place a letter at the same
time; when both characters are in̊Σ and differ, i.e., two computations consent to different letters at the
same time; when either character is dotted but it is not the dotted copy of the other, i.e., one computation
is placing a letter and the other is not consenting to it.
The match is extended to two languagesB′, B′′ on the double alphabet, asB′@B′′ = {w′@w′′ | w′ ∈
B′, w′′ ∈ B′′}. The iterated matchBi@ is defined for alli ≥ 0, asB0@ = B, Bi@ = B(i−1)@@B, if
i > 0. Theclosure under match, or@-closure, of a languageB ⊆ Σ̃∗ is B@ =

⋃
i≥0B

i@.

By definition, ifw ∈ B@
A andw ∈ Σ∗, thenw = w1@w2@ . . .@wm for m ≥ 1 wordsw1, . . . , wm ∈ B,

such that in each position1 ≤ i ≤ |w|, exactly one word, saywh, is undotted, i.e.,wh(i) ∈ Σ. Therefore,
the corresponding computation placeswh(i), andwj(i) ∈ Σ̊ for all j 6= h, i.e., the corresponding
computations consent towh(i). Given inputw ∈ Σ∗, a multi-set machine, defined on a FA recognizing a
languageB ⊆ Σ̃∗, acceptsw if, and only if, there existm ≤ |w| computationsw1, . . . , wh ∈ B such that
w = w1@w2@ . . .@wm. We say thatm is the matchdegree. These considerations lead to the following
definition of consensual languages.

Definition 1. Theconsensual language with baseB is: C(B) = B@ ∩ Σ∗. The family ofconsensually
regular languages, denoted byCREG, is the collection of all languagesC(B), such thatB is regular.

Hence, aCREG language isconsensually specifiedby a regular expression overΣ̃. For instance, language
BA = å∗åa∗̊b∗b̊b∗ above defines the nonregular languageC(BA) = {anbn | n > 0}.

Example 1. The languageL1 = {anbncn | n > 0} is consensually specified by the baseB1 =
å∗a å∗̊b∗b b̊∗c̊∗c c̊∗. For instance,aabbcc is the (strong) match of̊a a b̊ b c̊ c anda å b b̊ c c̊.
The commutative languageL2 = com

(
(abb)+

)
, wherecom stands for the commutative closure, is spec-

ified by the baseB2 = com
(
abb

) ∃

Σ̊∗, where

∃

is the shuffle operator.
The non-semilinear languageL3 = {ba1ba2ba3 . . . bak | k ≥ 1} is consensually specified by the base(
å ∪ b̊

)∗

b å∗ a å∗
(
b̊ å∗ a å∗

)+
.

Since the definition of match and match closure apply to any language, irrespectively of it being regular
or not, it is meaningful to consider the consensual language defined by,say, a context-free base. For an
arbitrary language familyF , CF denotes the collection of all languagesC(B), such thatB ∈ F . Some
results forCcontext-freeandCcontext-sensitiveare in [9] but are not discussed here.

Summary of known CREG properties. Language family comparisons: CREG is incomparable with
the context-free and deterministic context-free families, is included within the context-sensitive family
and contains non-semilinear languages [4].CREG strictly includes the family of languages accepted
by partially-blind multi-counter machines that are deterministic and quasi-real-time, as well as their
union [8]; moreover, it includes the closure under union and concatenation of commutative semilinear
languages [10].
Closure properties:CREG is is closed under marked concatenation, marked iteration, inverse alphabetic

homomorphism, reversal, and intersection and union with regular languages[4]. The marked concatena-
tion of two languagesL1, L2 ⊆ Σ∗ is the languageL1#L2, where# 6∈ Σ, while the marked iteration of
L ⊆ Σ∗ is the language(L#)∗. A language family enjoying such properties is known as apre-Abstract
Family of Languages(see, e.g., [14]). A precise characterization of the bases that consensually specify
regular languages is in [7]; an analysis of the reduction in descriptional complexity of the consensual
base with respect to the specified regular language is in [4].
Complexity:CREG is in NLOGSPACE, i.e., it can be recognized by a nondeterministic multitape Turing
machine working inlog n space. The recognizer ofCREG languages is the multi-set machine informally
described above, which is a special kind of nondeterministic, real-time multi-counter machine [4].
More properties will be listed as we proceed.
An open problem is whether allCREG languages over a unary alphabet are regular.

2.1 Regular Languages Coincide with Consensual Strictly-Locally-Testable Languages

WhenC(B) is regular? As said, if there exists a finiteH such that every sentence ofC(B) has match
degreeh ≤ H, thenC(B) is regular because the multi-sets in the consensual machine are bounded. A
less evident condition for regularity is that the match degree of every sentencew ∈ C(B) is maximal,
i.e., equal to|w|. In this case it is possible to construct a NFA simulating the multi-set machine [4].
A surprising deep result [9] is

Theorem 1. REG = CSLT , whereSLT is the family ofStrictly Locally Testablelanguages [11].

Family k-SLT is the subfamily of star-free (or noncounting) regular languages that is recognized by a
DFA using a sliding window of widthk ≥ 1 (e.g., [1]); a language is SLT if it isk-SLT for somek. It is
well-known that a word of length≥ k belongs to ak-SLT language iff itsk-prefix (resp. suffix) belongs
to the set of legalk-prefixes (resp. suffixes), and everyk-factor belongs to the set of legalk-factors.
The proofs of the two inclusions stated in Th. 1 are in [9] and we give just ashort hint.
The proof ofREG ⊇ CSLT considers thek-local DFA [1], A, recognizingB. Each statep of A is
uniquely identified by the suffix of lengthk of all words leading intop (the initial state and its close
neighbors are identified byε and by shorter words). The transition relation of the multi-set machine for
such ak-local DFA leads to multi-sets that are bounded, therefore the consensual language is regular.
In the other direction, the proof of

Lemma 1. REG ⊆ CSLT

is more involved and required to extend the classical homomorphic characterization of regular languages
(Medvedev Theor. [12] also in [13]), stating that every regular language overΣ is the alphabetic homo-
morphism of a 2-SLT language over a (much) larger alphabet∆. We first generalized Medvedev Theor.
[5, 6], in order to reduce the size of alphabet∆ by increasing the value of parameterk beyond 2. To
prove Lm. 1 we only need the following simpler statement.

Lemma 2. LetL ⊆ Σ∗ be recognized by an NFA havingn states. ThenL is the alphabetic homomor-
phism of ak-SLT language over an alphabet∆ of size|∆| = 2 · |Σ| wherek is in O(lgn). ([6] proves
that the ratio|∆|/|Σ| cannot go under 2.)

Given a regular languageR overΣ, by Lm. 2 we can find a ak-SLT languageB′ over Σ̃ such that
R is the homomorphic image ofB′. Let switch : Σ̃ → Σ̃ be the mapping such thatswitch(a) = å,
switch(̊a) = a, for all a ∈ Σ. ThenB′′ = switch(B′) is clearly ink-SLT. LetB = B′∪B′′. A technical
difficulty, addressed in [9], is that the three sets of legalk-prefixes—suffixes—factors forB′ may be
non-disjoint from the corresponding sets forB′′, thus possibly causing over generalization when the sets
are orderly united. By taking in Lm 2 a larger value ofk and a so-called factor-decodable duality-free
encoding of the NFA states, we ensure that the sets associated toB′ andB′′ are disjoint and their union
thus defines exactlyB. Since for every wordw′ in B the correspondingw′′ in B′′ strongly matches,
C(B) = R.
Open problem: if the baseB is a star-free (non-counting) language,C(B) is generally non-regular, e.g.,
see Fig. 1a. Is the inclusionCstar−free ⊆ CREG strict?

2.2 Compositional Method for Union and Concatenation

As already discusses, few (non)closure properties ofCREG are known, and the status of the closure under
the basic operations is uncertain. In particular, union and concatenation closures have neither proofs nor
candidate counterexamples. To tackle the problem, we have investigated some“rich” subfamilies of
CREG, proving that their closure under union and concatenation remains inCREG. This approach will
hopefully give suggestions for the general case ofCREG. In the remainder, we illustrate our methods for
the case of union; for concatenation, the similar but more complex discussionis in [10].
Example 2. The languageL′′ = {anb2n | n > 0} is consensually specified by the baseB′′ =
å∗a å∗̊b∗b b̊∗̊b∗b b̊∗. For instance,aabbbb is the match of̊a a b̊ b b̊ b anda å b b̊ b b̊.
Consider now again baseBA = å∗åa∗̊b∗b̊b∗ and letL′ = C(BA) = {anbn | n > 0}. The language
L′ ∪L′′ is inCREG, but, counter to a naive intuition, it is not specified by the baseBA ∪B′′. In general,
C(B1 ∪B2) ⊃ C(B1)∪C(B2); in the example,C(BA ∪B′′) contains also undesirable “cross-matching”
words, such asaabbb = åab̊b̊b@ ååbbb.

We first introduce a normal form, named decomposed, of the base languages. Second, we state a condi-
tion, named joinability, for decomposed forms, that guarantees closure under union. This results hold for
every consensual language, but the difficulty remains to find a systematic method for constructing base
languages that meet such conditions. Third, we introduce an implementation ofdecomposed joinable
forms, relying on numerical congruences. LetB, B′ be languages included iñΣ+ − Σ̊+. We say thatB
is unproductiveif C(B) = ∅, and that the pair(B,B′) is unmatchableif B@B′ = ∅.
Definition 2. A baseB is in decomposed formif it can be partitioned into two languages, named the
scaffoldsc and thefill fl of B, such thatfl is unproductive, and the pair(sc, sc) is unmatchable.

The name “scaffold” conveys the idea of an arrangement superposedjust once on each word of the base;
the name “fill” suggests an optional repeatable component to fill-in the letters which are dotted in the
scaffold. Three straightforward remarks follow. For every baseB there exists a consensually equivalent
decomposed base: it suffices to take as scaffold the language{a dot(y) | ay ∈ B, a ∈ Σ, y ∈ Σ̃∗}, and
as fill the language{dot(x)y | x ∈ Σ̃, y ∈ Σ̃∗, xy ∈ B}, wheredot : Σ → Σ̊ is the mappingdot(a) = å
for all a ∈ Σ. For everys ⊆ sc, f ⊆ fl, the bases ∪ f is a decomposed form. The scaffold, but not
the fill, may include words overΣ. Consider a wordw ∈ C(B). Since the fill is unproductive, its match
closure leaves some letters ofw dotted, which must beplacedby the scaffold. Since by definition the
match closure of the scaffold alone is the scaffold itself, the following lemma holds.
Lemma 3. If B = sc ∪ fl is in decomposed form, as in Def. 2, thenC(B) =

(
sc ∪ (sc@ fl@)

)
∩ Σ∗.

Example 3. The table shows the decomposed bases of languagesL′ andL′′ of Ex. 2, restricted for
brevity to the case that the number ofa’s is a multiple of 3. LetL′ = com

(
{a3nb3n | n ≥ 1}

)
, with

scaffoldsc′ and fill fl′, andL′′ = com
(
{a3nb6n | n ≥ 1}

)
, with scaffoldsc′′ and fill fl′′.

scaffold fill a strong match

L′ (åaa)+ (b̊bb)+ (̊a3)∗ ååa (̊a3)∗ (̊b3)∗ b̊b̊b (̊b3)∗
a å a b b̊ b ∈ sc′

@ å a å b̊ b b̊ ∈ fl′

L′′ (̊aaa)+ (̊bbb)+ (̊a3)∗ ååa (̊a3)∗ (̊b3)∗ (b̊b̊b)2 (̊b3)∗
å a a b̊ b b b̊ b b ∈ sc′

@ a å å b b̊ b̊ b b̊ b̊ ∈ fl′

Clearly, every word insc′ is unmatchable with every other word insc′, hencesc′@sc′ = ∅. Similarly,
every fill is unproductive. Every word inL′ is the match of exactly one word in the scaffold with one or
more words in the fill. Analogous remarks hold forL′′.

Next, consider two decomposed basesB′ = sc′∪fl′ andB′′ = sc′′∪fl′′. By imposing further conditions
on the bases, we obtain a very useful theorem about composition of the consensual languages by union.
Definition 3. Two basesB′, B′′ in decomposed form arejoinableif their unionB′ ∪B′′ is decomposed,
with scaffoldsc′ ∪ sc′′ and fill fl′ ∪ fl′′, and the pairs(sc′, f l′′) and(sc′′, f l′) are unmatchable.

Theorem 2. If two basesB′ andB′′ are joinable thenC(B′) ∪ C(B′′) = C (B′ ∪B′′).

Example 4. For Ex. 3, we check that both bases are joinable. The union of the basesis in decomposed
form: fl′ ∪ fl′′ is unproductive (because letters at positions 3, 6, . . . cannot be placed); the pair(sc′, sc′′)
is unmatchable, hence also(sc′ ∪ sc′′, sc′ ∪ sc′′) is unmatchable. Moreover,(sc′, f l′′), and(sc′′, f l′) are
unmatchable. ThereforeL′ ∪ L′′ = C(sc′ ∪ sc′′ ∪ fl′ ∪ fl′′).

A Decomposed Form Relying on CongruencesWe now design a decomposed form, suitable for sup-
porting joinability, that uses module arithmetic for assigning the positions to the dotted and undotted
letters within a wordw over Σ̃; the preceding examples offered some intuition for this formal develop-
ment. Loosely speaking, each decomposed base language is “personalized” by a sort of unique pattern
of dotted/undotted letters, such that, when we want to unite or concatenate twolanguages, the match
of two words with different patterns is undefined, thus ensuring that the union or catenation of the two
decomposed bases specifies the intended language composition.
For everya ∈ Σ, consider the projection ofw on ã = {a, å}, denoted byπã(x) and, in there, the
numbered positions of eacha andå. Let m be an integer. By prescribing that for each base language,
each undotted lettera may only occur in positionsj characterized by a specified value of the congruence
j mod m, we make the bases decomposed.

Definition 4 (Slots and modules). Letm > 3, calledmodule, be an even number. LetR ⊆ {1, . . . , (m/2−
1)} be a nonempty set, called aset of slots of modulem. For everya ∈ Σ, define a finite language
Rm(a) ⊂ ãm, where only positions 1 andr + 1 are dotted:Rm(a) = {̊a ar−1̊a am−r−1 | r ∈ R}. The
disjoint regular languagessc-Rm, fl-Rm are defined as:

sc-Rm = {x | ∀a ∈ Σ, πã(x) ∈ (Rm(a) ∪ a)∗} fl-Rm = switch(sc-Rm)− Σ̊∗.

It is fairly obvious thatC(B) = Σ+, sinceΣ+ ⊆ sc-Rm. Also, sc-Rm@sc-Rm = ∅ and fl-Rm is
unproductive. The following lemma is also obvious.
Lemma 4. For all even numbersm > 3 and non-empty setsR of slots of modulem, every baseE ⊆
sc-Rm ∪ fl-Rm is in decomposed form, with scaffold:E ∩ sc-Rm and fill: E ∩ fl-Rm.

Example 5. Letm = 6, R = {1, 2} andΣ = {a, b}. ThenR6(a) = {̊åaaaaa, ååaaaa}

sc-R6 = (̊åaaaaa ∪ ååaaaa ∪ a)∗

∃

(̊b̊bbbbb ∪ b̊b̊bbbb ∪ b)∗

fl-R6 =
(
(aååååa ∪ åaåååa ∪ å)∗

∃

(bb̊b̊b̊b̊b ∪ b̊bb̊b̊b̊b ∪ b̊)∗
)
− {̊a, b̊}∗

By taking disjoint sets of slots over the same module, we obtain two bases that are joinable:

Theorem 3. Letm > 3 and letR′, R′′ be two disjoint sets of slots of modulem, and letE′ ⊆ sc-R′
m ∪

fl-R′
m andE′′ ⊆ sc-R′′

m ∪ fl-R′′
m be two bases. ThenE′ andE′′ are joinable.

Th. 3 is used to show that the closure under union of a subfamilyF of CREG is still in CREG. First, one
needs to prove that, for every languageL ∈ F , there existsm > 3 such that, for allm′ ≥ m, 1 < r < m′,
L can be specified by a decomposed base with modulem′ and set of slots{r}. Consider the union of
two or more languages inF . Select the largest module and a different value ofr, i.e., disjoint sets of
slots, for their decomposed bases. By Th. 3, the union of such bases is still a joinable base. By Th. 2, the
result is still a consensual language.
The above compositional method has been so far applied to twoCREG subfamilies: the deterministic
partially blind multi-counter machines [8] and the commutative languages having semilinear Parikh im-
age [10], but more cases are under way. The closure ofCREG under marked union and concatenation,
proved with an ad hoc method in [4], is an immediate corollary of the compositionalmethod.

Research DirectionsAs said, most closure properties are still unknown forCREG. The questions of
deterministic versus nondeterministic behavior, of ambiguity, and of computational complexity are al-
most unexplored. The precise relations between consensual multi-set machines and the several existing
families of multi-counter machines have been investigated to a very limited extent.
For each language familyF , it holdsCF ⊇ F , meaning that the consensual use boosts a language family
(butCcontext-sensitive= context-sensitive). A generic question for any familyF is: what familyB exactly
yieldsF , i.e.,CB = F? ForF = REG we know the answer isB = SLT .

References

[1] P. Caron. Families of locally testable languages.Theor. Comp. Sci., 242(1-2):361–376, 2000.

[2] Stefano Crespi Reghizzi and Pierluigi San Pietro. Consensual definition of languages by regular
sets. In Carlos Martı́n-Vide, Friedrich Otto, and Henning Fernau, editors,Language and Automata
Theory and Applications, LATA 2008, volume 5196 ofLNCS, pages 196–208. Springer, 2008.

[3] Stefano Crespi Reghizzi and Pierluigi San Pietro. Languages defined by consensual computations.
In Alessandra Cherubini, Mario Coppo, and Giuseppe Persiano, editors,Theoretical Computer Sci-
ence, 11th Italian Conference, ICTCS 2009, Cremona, Italy, September 28-30, 2009, Proceedings,
pages 82–85, 2009.

[4] Stefano Crespi Reghizzi and Pierluigi San Pietro. Consensual languages and matching finite-state
computations.RAIRO - Theor. Inf. and Applic, 45(1):77–97, 2011.

[5] Stefano Crespi Reghizzi and Pierluigi San Pietro. From regular to strictly locally testable languages.
In Petr Ambroz, Stepan Holub, and Zuzana Masákov́a, editors,Proc. 8th Int. Conf. WORDS 2011,
volume 63 ofEPTCS, pages 103–111, 2011.

[6] Stefano Crespi Reghizzi and Pierluigi San Pietro. From regular to strictly locally testable languages.
International Journal of Foundations of Computer Science, 23(08):1711–1727, 2012.

[7] Stefano Crespi Reghizzi and Pierluigi San Pietro. Strict local testability with consensus equals reg-
ularity. In Nelma Moreira and Rogério Reis, editors,17th International Conference CIAA 2012,
Porto, Portugal, July 17-20, 2012. Proceedings, volume 7381 ofLecture Notes in Computer Sci-
ence, pages 113–124. Springer, 2012.

[8] Stefano Crespi Reghizzi and Pierluigi San Pietro. Deterministic counter machines and parallel
matching computations. In Stavros Konstantinidis, editor,Impl. and Appl. of Automata - 18th Int.
Conf., CIAA 2013, Halifax, Nova Scotia, Canada, July 16-19, 2013., volume 7982 ofLecture Notes
in Computer Science, pages 280–291. Springer, 2013.

[9] Stefano Crespi Reghizzi and Pierluigi San Pietro. Strict local testability with consensus equals
regularity, and other properties.Int. J. Found. Comput. Sci, 24(6):747–764, 2013.

[10] Stefano Crespi Reghizzi and Pierluigi San Pietro. Commutative languages and their composition
by consensual methods. InProc. 14th Int. Conference on Automata and Formal Languages, AFL
2014, Szeged, Hungary, May 27-29, 2014, volume 151 ofElectronic Proceedings in Theoretical
Computer Science, pages 216–230. Open Publishing Association, 2014.

[11] R. McNaughton and S. Papert.Counter-free Automata. MIT Press, Cambridge, USA, 1971.

[12] Y. T. Medvedev. On the class of events representable in a finite automaton. In E. F. Moore, editor,
Sequential machines – Selected papers (translated from Russian), pages 215–227. Addison-Wesley,
New York, NY, USA, 1964.

[13] S. Eilenberg.Automata, Languages, and Machines. Academic Press, 1974.

[14] Arto Salomaa.Formal languages. Academic Press, San Diego, CA, USA, 1987.

[15] Stefano Crespi Reghizzi and Pierluigi San Pietro. Commutative consensual counter languages.Talk
given at ICTCS 2013,, 14th Italian Conference on Theoretical Computer Science, Palermo, Italia,
Sept. 9-11, 2013., 2013.

