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Abstract

This paper collects recent results on the consensuallyae@liz z¢) languages, a novel parallel
abstract machine model. The model uses a finite automatoefittedhe sequential computations,
and a simple matching rule to check that computations arglieeanent. At any time, one com-
putation acts as leader for the current transition, and ¢heaiming computations must consent to
the current character the leader has placed. Placing arseting to the current character are en-
coded by doubling the alphabet with a marked copy. The régzegof Crg¢ is a nondeterministic
multi-set machine. After listing the main properties amiblaage family comparisons, we show that
regular languages coincide with the consensual languagesiton strictly locally testable computa-
tions. A method for designing consensual languages softaattnion is consensual is shown. Open
problems and research directions are listed.

1 Introduction

After the introduction of the family of consensual languages in 2008 [2]atlthors have investigated its
properties in a series of works [3, 4, 7, 5, 9, 6, 15, 8, 10]. Itis timelyés@nt the main results in a more
unified way, and, in particular, to revisit the properties singularly proneshrlier papers, as corollaries
of the latest results.

Here, we introduce the consensual model by contrast with respect ttefscal finite automata. The
Deterministic Finite Automata (DFA) (and their extensions with unbounded menaieshe funda-
mental abstract model of sequential computations. On the other haniiklgaraputations, though they
are fundamental for modern computer applications, lack a real standatel,ns0 that it is worthwhile
to introduce and study new ideas that may lead to interesting models, to betadtiedexisting ones.
Our consensual definitions enrich DFAs with parallel computations thats&asually” converge into
a final configuration. Consider an input word, and recall how it igp@etvely, recognized by a DFA,
by a Nondeterministic FA (NFA), and by an Alternating FA (AFA). The DFAshast one accepting
(i.e., reaching a final state) computation and zero rejecting ones, the NFgnkaor more accepting and
zero or more rejecting computations; and the AFA has one or more acceptirggeo rejecting com-
putations. In the model named Consensually Regudla=(;), to recognize a word of lengthn, the
abstract machine has up toaccepting computations, such that, for each lettar, ..., z(n), exactly
one computation “places” the letter (i.e., asserts its validity) and the remainingutatoms consent to
it. The dual behavior placing/consenting is implemented by a DFA that usesldedalphabet, made
by the original alphabet and by a marked (dotted) copy. Such DFA defimegular language over the
double alphabet, called the base of the language consensually rechghisedevice exceeds the power
of finite-state computations, because the number of instantaneous catifigsimay grow linearly with
the input length. Since a configuration is encoded by a multi-set of DFA sthtedevice is accordingly
named a multi-set (consensual) machine and belongs to the class of sotokéladmachines, well-
known through Petri Nets; but the firing rules of the two models are vefgrdiit. Otherwise, we are
not aware of any abstract machine model similar to consensual machines.

Thus a consensual computation involves tightly synchronized paralle¢gses, defined by the regular
base language; at any time, one process leads the computation and teerathieconsent to the choice
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proposed by the leader. If leadership is restricted to a finite number oégses, the model degenerates
to DFA. Otherwise the model is a logspace nondeterministic multi-counter machimeh is worth
comparing with other types of automata.

2 The Consensual Model

We start with an intuitive example to show how the consensual model makesf aseA to perform
parallel coordinated computations which reinforce each other; thenmweafize the model.

Consider the NFAA of Fig. 1, where some of the transitions are marked as dashed, and thaingma
solid transitions are colored in red to highlight the distinction. There is a @nstn this marking: for
each letter, and for each statg

at most one dashedlabeled transition and at most one salidabeled transition exit from. (1)

A solid transitiong; — g; is calledplacing (it placeslettera); a dashed transitiog; N g; is called
consenting (it consentgo a). We describe the behavior of a non-deterministic, parallel machine
featuring a set of synchronized sequential processes, each mgeabénite-state computation of.
Thus, each computation starts in the initial state and is in one of the stafes\éf, is called amulti-set
machine since its configuration is a multi-set of states/Af Given an inputz € X7, My starts up to

|z| parallel computations, each in the initial state At each step)/ 4 reads the current input symbel

and makes each sequential computation move (in parallel) to the next statajtedrp the transition
relation of A, for the present state and input symbol. In other words, each (ségjyi@omputation
nondeterministically chooses anlabeled transition from its current state. This choice must meet at
each step the following global “matching constraint”:

onecomputation performs a placing transition, aildothers perform consenting transitions.  (2)

These computations are callethtching M 4 accepts whenr has been consumed and each computation
is in a final state ofA. The language accepted by the multi-set machine is callecbigensual language
defined byA.
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(a) FA A with dashed (consenting) transitions and solidP) Three matching computations for inputabbb.
(placing) ones.

Figure 1: A multi-set machind/ 4. M4 accepts word?3b? because (i)d admits the matching computa-
tions of Fig. 1(b), and (ii) at every step, there is exactly one solid (i.e.imgatransition. Therefore the
computations are matching and define an accepting run of magfiine

Rather than using dashed and solid or colored transitions, it is prefaécaldentify a consenting tran-
sition by marking with a dot its letter, using the“dotted” co@yo), ... of the alphabet. This allows a
more abstract deflnltlon based on the language recognizéd imgtead of the graph oA. Given a finite
alphabet, let > be thedotted(or marked) copy of. Thedouble alphabets ¥ = YU,

We reformulate the preceding example using the double alphabetB A et a *aq*b*bb*. This kind

of expression is called a “consensual regular expression”. It ig tasee thatB, is the language
recognized by the above automaténmodified by dotting the labels of dashed transitions. The modified
version of A is now a DFA, sinced meets constraint (1). ThereforB,4 can be regarded as the set of
all possible (sequential) computations &f4, going from the initial to the final state. For instance,
computatiorr; above is represented by the wariibbb, cs by Gaabbb, andes by aaabbb.



To formalize the matching computations of a multi-set machine, we introduce d paytranetrical, and
associative binary operat@ : ¥ x ¥ — X, calledmatch defined as follows, for alk € X:

a@Qa = aQa = a, a@Qa = a, @ is undefined in every other case

The match is extended to words of equal length as a letter-by-letter applidayi@ssuming@e = e:
for everyn > 1, for all w, w’ € X", if, for all positionsi, 1 < i < n, w(i)Qw’(i) is defined, then:

w@w = (w(l)@Quw'(1)) -...- (w(n)@uw'(n)). Inevery other casey@u' is undefined.

Hence, the match is undefined on wordsw’ of unequal lengths, which cannot in fact represent two
parallel computations in a multi-set machine. Moreovew’ is undefined even whejw| = |w/], if
there exists a position such thatw(j)@Quw’(j) is undefined, which occurs in three cases: when both
letters are iz, corresponding to the situation when two computations try to place a letter arties s
time; when both characters areXhand differ, i.e., two computations consent to different letters at the
same time; when either character is dotted but it is not the dotted copy of theigh®ne computation

is placing a letter and the other is not consenting to it.

The match is extended to two languad#s B” on the double alphabet, @& @ B” = {w/' Quw" | w' €
B',w" € B"}. The iterated matci'® is defined for alli > 0, asB°® = B, B'® = Bt-DeapB, if

1 > 0. Theclosure under matchor @-closure of a languagéds C Y*is B = Ui>o B@,

By definition, ifw € B% andw € ¥*, thenw = w;Quw-@ . .. Qw,, form > 1 wordswy, ..., w, € B,
such that in each positian< i < |w|, exactly one word, sayy, is undotted, i.eav,(2) € X. Therefore

the corresponding computation places(:), andw;(i) € > for all j # h, i.e., the corresponding
computations consent o, (7). Given inputw € ¥*, a multi-set machine, defined on a FA recognizing a
languageB C %*, acceptsy if, and only if, there existn < |w| computationsu, . .., wy, € B such that

w = w1Qu-,Q@. .. Quw,,. We say thain is the matcldegree These considerations lead to the following
definition of consensual languages.

Definition 1. Theconsensual language with bagkis: C(B) = B® N %*. The family ofconsensually
regular languages, denoted l6yr z, is the collection of all language&X B), such thatB is regular.

Hence, &z language isonsensually specifidey a regular expression oVEr For instance, language
Ba = a*aa*b*bb* above defines the nonregular languég& ) = {a™b" | n > 0}.

Example 1. The language.; = {a"b"c" | n > 0} is consensually specmed by the baBe =

&*a a*b*bb*é*c é*. For instancegabbec is the (strong) match afa bbécandadabbeé.

The commutative languadge, = com((abb) ) wherecom stands for the commutative closure, is spec-
ified by the basd3; = com(abb) Ww¥*, wherew is the shuffle operator.

The non-semilinear languade; = {ba'baba®...ba* | k > 1} is consensually specified by the base

o\ * o -+
(&Ub) bt adt (b&*a&*) .

Since the definition of match and match closure apply to any language, ctegbeof it being regular
or not, it is meaningful to consider the consensual language definesdypya context-free base. For an
arbitrary language familyr, C'r denotes the collection of all languagéss), such thatB € F. Some
results forCeontext-free@Nd Ceontext-sensitiva@r€ in [9] but are not discussed here.

Summary of known Crpq properties. Language family comparison€'r g is incomparable with
the context-free and deterministic context-free families, is included within theexbsensitive family
and contains non-semilinear languages [@lrr¢ strictly includes the family of languages accepted
by partially-blind multi-counter machines that are deterministic and quasi-real-timevell as their
union [8]; moreover, it includes the closure under union and conciid@naf commutative semilinear
languages [10].

Closure propertiesCrgq is is closed under marked concatenation, marked iteration, inverse afighabe



homomorphism, reversal, and intersection and union with regular lang[#gg@&se marked concatena-
tion of two languaged., Lo, C X* is the languagé., # Lo, where# ¢ X, while the marked iteration of
L C ¥*is the languagéL#)*. A language family enjoying such properties is known gseaAbstract
Family of Languagessee, e.g., [14]). A precise characterization of the bases that carabnspecify
regular languages is in [7]; an analysis of the reduction in descriptiamaplexity of the consensual
base with respect to the specified regular language is in [4].

Complexity:Creq is in NLOGSPACE, i.e., it can be recognized by a nondeterministic multitape Turing
machine working ifog n space. The recognizer 6fz g languages is the multi-set machine informally
described above, which is a special kind of nondeterministic, real-time muititepmachine [4].

More properties will be listed as we proceed.

An open problem is whether allr g languages over a unary alphabet are regular.

2.1 Regular Languages Coincide with Consensual Strictly-Ladly-Testable Languages

WhenC(B) is regular? As said, if there exists a finite such that every sentence ©fB) has match
degreeh < H, thenC(B) is regular because the multi-sets in the consensual machine are bounded. A
less evident condition for regularity is that the match degree of everyremniec C(B) is maximal,

i.e., equal tdqw|. In this case it is possible to construct a NFA simulating the multi-set machine [4].

A surprising deep result [9] is

Theorem 1. REG = Cs_1, whereS LT is the family ofStrictly Locally Testabléanguages [11].

Family k-SLT is the subfamily of star-free (or noncounting) regular languagassistrecognized by a
DFA using a sliding window of widtlt > 1 (e.g., [1]); a language is SLT if it i8-SLT for somek. It is
well-known that a word of lengtk & belongs to &-SLT language iff itsk-prefix (resp. suffix) belongs

to the set of legak-prefixes (resp. suffixes), and evenfactor belongs to the set of legdfactors.

The proofs of the two inclusions stated in Th. 1 are in [9] and we give jebbat hint.

The proof of REG O Cgs 1 considers thé-local DFA [1], A, recognizingB. Each statey of A is
uniquely identified by the suffix of length of all words leading int@ (the initial state and its close
neighbors are identified byand by shorter words). The transition relation of the multi-set machine for
such ak-local DFA leads to multi-sets that are bounded, therefore the conddssgaage is regular.

In the other direction, the proof of

Lemmal. REG C Cg.t

is more involved and required to extend the classical homomorphic chazatitar of regular languages
(Medvedev Theor. [12] also in [13]), stating that every regular lagguover. is the alphabetic homo-
morphism of a 2-SLT language over a (much) larger alphabétVe first generalized Medvedev Theor.
[5, 6], in order to reduce the size of alphalfetby increasing the value of parametebeyond 2. To
prove Lm. 1 we only need the following simpler statement.

Lemma 2. Let L. C X* be recognized by an NFA havingstates. Therl is the alphabetic homomor-
phism of ak-SLT language over an alphabét of size|A| = 2 - |X| wherek is in O(Ign). ([6] proves
that the ratigA|/|%| cannot go under 2.)

Given a regular languag® over X, by Lm. 2 we can find a @-SLT languageB’ over ¥ such that

R is the homomorphic image d&’. Letswitch: ¥ — ¥ be the mapping such thatitch(a) = 4,
switch(a) = a, for all a € ¥. ThenB” = switch B’) is clearly ink-SLT. Let B = B’ U B”. A technical
difficulty, addressed in [9], is that the three sets of lelgqrefixes—suffixes—factors faB’ may be
non-disjoint from the corresponding sets #8f, thus possibly causing over generalization when the sets
are orderly united. By taking in Lm 2 a larger valuefofind a so-called factor-decodable duality-free
encoding of the NFA states, we ensure that the sets associat¥dta B” are disjoint and their union
thus defines exactlys. Since for every wordy’ in B the corresponding” in B” strongly matches,
C(B) = R.

Open problemif the baseB is a star-free (non-counting) languagé ) is generally non-regular, e.g.,
see Fig. 1a. Is the inclusiall;q,— rree € CrEG Strict?



2.2 Compositional Method for Union and Concatenation

As already discusses, few (non)closure properti€sgf are known, and the status of the closure under
the basic operations is uncertain. In particular, union and concaten&igures have neither proofs nor
candidate counterexamples. To tackle the problem, we have investigated rschesubfamilies of
CrEeq, proving that their closure under union and concatenation remaifig jiz;. This approach will
hopefully give suggestions for the general cas€'gf. In the remainder, we illustrate our methods for
the case of union; for concatenation, the similar but more complex discussiofiL0].

Example 2. The languagel,” = {a™?" | n > 0} is consensually specified by the baBé =
a*a & b*b b*b*b b*. For instanceqabbbb is the match ofa bbb b anda ab bbb.

Consider now again bas@, = a*aa*b*bb* and letL’ = C(B4) = {a™b" | n > 0}. The language
L'u L"isin Crgg, but, counter to a naive intuition, it is not specified by the h@geJ B”. In general,
C(B1UB3) D C(B1)UC(B2); inthe exampleC (B4 U B") contains also undesirable “cross-matching”
words, such asabbb = aabbb @ Gabbb.

We first introduce a normal form, named decomposed, of the base leeguagcond, we state a condi-
tion, named joinability, for decomposed forms, that guarantees closues unitbn. This results hold for
every consensual language, but the difficulty remains to find a systematioanier constructing base
languages that meet such conditions. Third, we introduce an implementati@tamposed joinable
forms, relying on numerical congruences. I&tB’ be languages included i+ — $*. We say thaB

is unproductivef C(B) = 0, and that the paifB, B’) is unmatchabléf BQB’ = ().

Definition 2. A baseB is in decomposed forntf it can be partitioned into two languages, named the
scaffoldsc and thefill fi of B, such thatfi is unproductive, and the pdisc, sc) is unmatchable.

The name “scaffold” conveys the idea of an arrangement superjustezhce on each word of the base;
the name “fill” suggests an optional repeatable component to fill-in the lettachwabhe dotted in the
scaffold. Three straightforward remarks follow. For every bBsbere exists a consensually equivalent
decomposed base: it suffices to take as scaffold the lanquedet(y) | ay € B,a € X,y € >+, and
as fill the languagédot(x)y | = € Y,y €St ay € B}, wheredot : ¥ — 3 is the mappinglot(a) =
foralla € X. For everys C sc¢, f C fl, the bases U f is a decomposed form. The scaffold, but not
the fill, may include words ovex. Consider a wordv € C(B). Since the fill is unproductive, its match
closure leaves some letterswfdotted, which must bplacedby the scaffold. Since by definition the
match closure of the scaffold alone is the scaffold itself, the following lemmashold

Lemma 3. If B = scU flis in decomposed form, as in Def. 2, th&(B) = (scU (sc@ f1®)) N T*.

Example 3. The table shows the decomposed bases of languBigasd L” of Ex. 2, restricted for
brevity to the case that the number$ is a multiple of 3. LetZ’ = com ({a®"b*" | n > 1}), with
scaffoldsc’ and fill £, andL” = com ({a®"6°" | n > 1}), with scaffoldsc” and fill f1”.

scaffold fill a strong match

. o o s oa a a a b b besc
L' | (ada)™ (bbb)T | (a3)* Gaad (a3)* (b®)* bbb (b3) @ 4 a b b befr
b bbb b besd
b bbb b obefr

L | (aaa)™ (bbb)* | (&%)* aaa (&3)* (b3)* (bbb)2 (b3)*

a a
Q a a
Clearly, every word ins¢’ is unmatchable with every other word éa’, hencesc@sc’ = (). Similarly,
every fill is unproductive. Every word if’ is the match of exactly one word in the scaffold with one or

more words in the fill. Analogous remarks hold fof.

Next, consider two decomposed ba&¥s= s¢’U fI’ andB” = sc¢”’U f1”. By imposing further conditions

on the bases, we obtain a very useful theorem about composition ofrieertsual languages by union.
Definition 3. Two bases3’, B” in decomposed form ajeinableif their union B’ U B” is decomposed,

with scaffoldsc’ U s¢’ and fill fI' U f1”, and the pairgsc’, f1”) and(sc”, fI') are unmatchable.

Theorem 2. If two basesB’ and B” are joinable therC(B’') UC(B") = C (B"U B").



Example 4. For Ex. 3, we check that both bases are joinable. The union of the Isagedecomposed
form: fI' U f1” is unproductive (because letters at positions 3, 6, . .. cannot belpjdice pair(sc’, sc”)
is unmatchable, hence alse’ U s¢”, s¢’ U s¢”) is unmatchable. Moreovefsc/, f1”), and(sc”, fI') are
unmatchable. Therefo® U L" = C(sc Usc” U fl' U f1").

A Decomposed Form Relying on Congruenced/e now design a decomposed form, suitable for sup-
porting joinability, that uses module arithmetic for assigning the positions to theddaig undotted
letters within a wordw over ¥; the preceding examples offered some intuition for this formal develop-
ment. Loosely speaking, each decomposed base language is “pemsdhhliz sort of unique pattern

of dotted/undotted letters, such that, when we want to unite or concatenatanguages, the match
of two words with different patterns is undefined, thus ensuring thatnienwor catenation of the two
decomposed bases specifies the intended language composition.

For everya € ¥, consider the projection ab ona = {a,a}, denoted byr;(x) and, in there, the
numbered positions of eachanda. Letm be an integer. By prescribing that for each base language,
each undotted letter may only occur in positiong characterized by a specified value of the congruence
j mod m, we make the bases decomposed.

Definition 4 (Slots and modules) etm > 3, calledmodule be an even number. L& C {1,...,(m/2—
1)} be a nonempty set, calledset of slots of module:. For everya € ¥, define a finite language
R,(a) C @™, where only positions 1 and+ 1 are dotted:R,,(a) = {éa"taa™ "' | r € R}. The
disjoint regular languagexc-R,,,, fl-R,, are defined as:

SCR,, = {x |Va € £, m3(z) € (Rp(a) Ua)*}  fl-R,, = switch'sc-R,,) — &*.

It is fairly obvious thatC(B) = X%, sinceXt C sc-R,,. Also, sc-R,,@sc-R,, = 0 andfl-R,, is
unproductive. The following lemma is also obvious.

Lemma 4. For all even numbers: > 3 and non-empty setR of slots of modulen, every baseZ C
sc-R,, Ufl-R,, is in decomposed form, with scaffolfl: N sc-R,, and fill: £ Nfl-R,,.

Example 5. Letm = 6, R = {1,2} andX = {a, b}. ThenR¢(a) = {adaaaaa, dacaaa}
scRg = (ahaaaa U Gadaaa U a)*w (bbbbbb U bbbbbb U b)*
fl-Rg = ((aaaaaa U adadaa U &) L (bbbbbb U bbbbbb U 23)*) — {a,by*
By taking disjoint sets of slots over the same module, we obtain two basesdhairable:

Theorem 3. Letm > 3 and letR’, R” be two disjoint sets of slots of module and letE’ C sc-R], U
fl-R], and E” C sc-R!! Ufl-R!! be two bases. Theli’ and E” are joinable.

Th. 3 is used to show that the closure under union of a subfamdy Crgq is still in Crgg. First, one
needs to prove that, for every langudge F, there existsn > 3 such that, foralln’ > m,1 < r < m/,

L can be specified by a decomposed base with moaland set of slot§r}. Consider the union of
two or more languages ift. Select the largest module and a different value,dfe., disjoint sets of
slots, for their decomposed bases. By Th. 3, the union of such basilssigosnable base. By Th. 2, the
result is still a consensual language.

The above compositional method has been so far applied t& g, subfamilies: the deterministic
partially blind multi-counter machines [8] and the commutative languages hamiljrsear Parikh im-
age [10], but more cases are under way. The closutézef, under marked union and concatenation,
proved with an ad hoc method in [4], is an immediate corollary of the compositietkdod.

Research DirectionsAs said, most closure properties are still unknown@yz. The questions of
deterministic versus nondeterministic behavior, of ambiguity, and of compuhttomplexity are al-
most unexplored. The precise relations between consensual multi-deinegand the several existing
families of multi-counter machines have been investigated to a very limited extent.

For each language familyy, it holdsC» O F, meaning that the consensual use boosts a language family
(but Ceontext-sensitive= coOnNtext-sensitive). A generic question for any faniflyis: what family 5 exactly
yields F, i.e.,Cg = F? ForF = REG we know the answer i8 = SLT.
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