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Abstract

We introduce the notion of Hypergraph Weighted Model (HWM) that generically asso-
ciates a tensor network to a hypergraph and then computes a value by tensor contractions
directed by its hyperedges. A series r defined on a hypergraph family is said to be recogniz-
able if there exists a HWM that computes it. This model generalizes the notion of rational
series on strings and trees. We prove some closure properties and study at which conditions,
finite support series are recognizable.

1 Introduction

Real-valued functions whose domains are composed of syntactical structures, such as strings,
trees or graphs, are widely used in computer science. One way to handle them is by means
of rational series that use automata devices to jointly analyse the structure and compute its
image. Rational series have been defined for strings and trees, but their extension to graphs is
challenging.

On the other hand, rational series have equivalent algebraic characterisations by means of linear
(or multi-linear) representations [3] [4]. We show in this paper that this last formalism can be
naturally extended to graphs or hypergraphs by associating tensors to the vertices of the graph.

More precisely, we define the notion of Hypergraph Weighted Model (HWM), a computational
model that generically associates a tensor network [9] to a hypergraph and that computes a
value by successive generalized tensor contractions directed by its hyperedges. We say that a
series r defined on a hypergraph family is recognizable (by HWM) if there exists a HWM M
that computes it: we then denote r by r3;. We first show that recognizable series defined on
strings or trees exactly recover the notion of rational series, while they can be defined on much
more general families. We prove two closure properties: if r and s are two recognizable series
defined on a family of connected hypergraphs, then r + s and r - s, respectively defined by
(r+$)(G) =r(G) + s(G) and (r - s)(G) = r(G)s(G) (the Hadamard product) are recognizable.

Rational series on strings and trees include polynomes, i.e. finite support series. This is not
always the case for recognizable series. For example, we show that finite support series are
not recognizable on the family of circular graphs (or strings). The main reason is that if a
recognizable series is not null on some hypergraph G, it must be also different from zero on
tilings of G, i.e. connected graphs made of copies of G. We show that if a graph family is
tiling-free, then recognizable series contain finite support series. Strings and trees, as any family
of rooted hypergraphs, are tiling-free.

We recall notions on tensors and hypergraphs in Section 2, we introduce the Hypergraph
Weighted Model and we study some closure properties in section 3, we introduce the notion
of tilings and we study the recognizability of finite support series in Section 4, and we then
propose a short conclusion.

All the proofs have been omitted in this extended abstract but can be found in [1].
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2 Preliminaries

2.1 Rational Series on Strings and Trees

We refer to [3, 6, 4] for notions about rational series on strings and trees.

Let X be a finite alphabet, and ¥* be the set of strings on X. A series on X* is a mapping
r:¥X* - K=Ror C. A series r is recognizable (or rational) if there exists a tuple (V,¢, u, 1)
where V' = K¢ for some integer d > 1, t,7 € V and g maps each symbol z € ¥ to a square
matrix M, € K¢ such that for any uy ...u, € %, r(uy ... up) =t My, ... M,,T.

A ranked alphabet F is a tuple (3, ) where X is a finite alphabet and where § maps each symbol
x of ¥ to an integer fz called its arity; for any k € N, let us denote F = 71({k}). A ranked
alphabet is positive if § takes its values in N..

The set of trees over a ranked alphabet F is denoted by T'(F). A tree series on T'(F) is a mapping
r: T(F) — K. A series r is recognizable (or rational) if there exists a triple (V, u, A), where
V = K9 for some integer d > 1, u maps each f € F, to a p-multilinear mapping u(f) € L(VP; V)
for each p > 0 and A € V, such that r(t) = AT u(t) for all t in T'(F), where u(t) € V is inductively
defined by N(f(tla st 7tp)) = /’L(f)(:u(tl)a T 7/1’(tp))‘

2.2 Tensors

Let d > 1 be an integer, V = K% where K = R or C and let (ey,...,e4) be the canonical basis of
V. Atensor T € ®"V = V®---@V (k times) can uniquely be expressed as a linear combination
T = Zil,...,ike[d] Ti.ip€i, ®---®e;, (where [d] = {1,---,d}) of pure tensors e;; ®- - -®e;, which
form a basis of ®k V' [8]. Hence, the tensor J can be represented as the multi-array (T, .i,)-

Definition 1. The tensor product of T € @’V and U € Q?V is the tensor T @ U €
QP defined by (T @ Wiy oipjyojy = Tigoiy Wiy, - For any v € K4, v —ve. v =
Zil,...,ike[d] Vi ... Vi€ @ - @ e, is the k-th tensor power of v.

Definition 2. Foranya € V,J € ®k V and j € [k], let us define a-T € K and a-;T € ®k71 %4
bya-(e @ Qe )=a'e; x-—-xa'e, anda-j(e; ® - Re;)=0o'e (e R - Qe @
e, ® - ®e;), and by extending these relations by linearity.

Let ® : VXV — V be an associative and symmetric bilinear mapping: Vu,v,w € V,u®v =v0u
and u ® (v O w) = (u®v) ®w. The mapping © is called a product.

Remark 1. Let a =1 = (1,...,1)T and let ®;q be defined by e; Oiq ej = d;je;, where 0 is the
Kronecker symbol: ®;q is called the identity product.

Let m < n < k be integers. Using our notations, the usual (m,n)-contraction operator Cp, y :
RFV = ®* 2V can be defined by Con(en ® - ®e,)=0m(e®@ €, @€, Oige,)®
€y @ e, | e, ® - ®ey). In particular, if A =3, ;g Aijei ®e; is a 2-order
tensor over K¢ (i.e. a square matriz), v = > A;je; Oiq e; is the diagonal vector of A and
C12(A) = a-v is its trace. Furthermore, if A =3, ;ciq Aijei®e; and B =3, .1y Bijei®e;
are 2-order tensors over K%, then Cos3(A®B)=a- (Z”kl A; jBriei ® (e @iqgex) ® el) 18
the tensor form of the matriz product A - B.

2.3 Hypergraphs
Definition 3. A hypergraph G = (V, E,l) over a positive ranked alphabet (¥X,4) is given by a

non empty finite set V., a mapping 1 : V. — 3 and a partition E = (hy)1<k<n, of Pa = {(v,j) :
veV,1<j<tv} where fv = fl(v).



Figure 1: (top) Graph associated with a string u = wuj---u,. (left) The hypergraph from
Example 1. (center) Example of circular string on the alphabet {a,b}. (right) Hypergraph G
associated with the tree t = f(a, f(a,a))

V' is the set of vertices, Pg is the set of ports and F is the set of hyperedges of G. The arity of
a symbol x can be seen as the number of ports of any vertex labelled by x. We will sometimes
use the notation v(® for the port (v,i) € Pg. A hypergraph is connected if for any partition
V = V1 U V4, there exists a hyperedge h € E and ports v%z),véj) € hst. vy € Vyand vy € V.
Example 1. Over the ranked alphabet {(a,3),(b,2)}, let V = {v1,va,v3}, I(v1) = l(v3) = a,
l(vg) = b, E = {hy,ho, hs, hy} where hy = {vgl),vg)’)}, ho = {052),051),21;2)}, hs = {vgg),vém
and hy = {v:(,)l)} (see Figure 1 (left)).

Example 2. A string u = uy ... u, over an alphabet X2 can be seen as a hypergraph over a ranked
alphabet (XU {¢,7},8) where tx = 2 for any v € ¥ and e =47 =1. Let V ={0,--- ,n + 1},
(0) =, ln+1) =7 and l(i) = u; for 1 < i < n. Let E = {ho,hi,...,h,} where hyg =
{(0,1),(1,1)} and h; = {(3,2),(i+ 1,1)} for 1 <i <mn (see Figure 1 (top)). The set of strings
>* gives rise to a family of hypergraphs.

Example 3. Similarly, we can associate any tree t over a ranked alphabet (X,8) with a graph
G on the ranked alphabet (X U {A},t') where §(f) = 8f + 1 for any f € X, and where the
special symbol X of arity 1 is connected to the free port of the vertex corresponding to the root
of t. The explicit construction of Gy can be found in [1], and the graph associated with the tree
t = f(a, f(a,a)) is shown as an example in Figure 1 (right).

Example 4. Given a finite alphabet X, let F = (X,4) be the ranked alphabet where fx = 2 for
each x € ¥.. We say that a hypergraph G = (V, E) on F is a circular string if and only if G
is connected and every hyperedge h € E is of the form h = {(v,2),(w,1)} for vyw € V (see
Figure 1 (middle).

3 Hypergraph Weighted Models

3.1 Definition

In this section, we give the formal definition of Hypergraph Weighted Models.

Definition 4. A rank d Hypergraph Weighted Model (HWM) on a ranked alphabet (3,4) is a
tuple M = (Var, {T%}ves, ©, a) where Vay = K¢, ® is a product on Vi, o € Vi, and {T%} pex
is a family of tensors where each T € ®nx Var-



Let G = (V, E,1) be a hypergraph and let ' = [d]¥G, the set of mappings from Pg to [d]. The
series ra; computed by the HWM M is defined by

rv(G) = 2‘3'7 H ol @ €

yel heE i€y(h)

where Ty = [,y T:(v(l))“q(v(ﬁv)) (using the notation T¥ = T'®)),

Let V ={v1, -+ ,v,}. The tensor T"@T?®---@T"" is of order | Pz|, and any element v € I' can
be seen as a multi-index of [d)/F6]. Thus, T, is the 'y(vgl)), . ,'y(vgm)), e ,7(117(11)), e ,'y(vr(lm"))—
coordinate of the tensor @ ; JV.

Example 5. Consider the hypergraph G from Ezample 1. We have

rar(G) =D i Thinis T Toinis @ (1, © €i)a (€4, © €1, © €3)a T (€45 © i) €.
Remark 2. If ® = ©iq and if o = 1, then ry(G) = ZveFId T, where T'rg = {y € T :
Vh € E,p,q € h = v(p) = v(q)}. For the hypergraph G from Ezample 1, we would have

TM(G) = Z’i1,’i2,i3,i6 7?11225752137g61211 :
Remark 3. Let X be a finite alphabet, let M, € K% foro € ¥ and let A = (K%, {Mj}yes, @ig, 1)

be a HWM. For any non empty word w = wy ---w, € X* and its corresponding circular string
Guw, we have 174(Gy) = Tr(My, - - My,,) (where Tr(M) is the trace of the matriz M ).

Remark 4. Note that if G is a hypergraph with two connected components G1 and Gs, we have
rv(G) = ry(Gy) - rar(Ge) for any HWM M.
Definition 5. Let H be a family of hypergraphs on a ranked alphabet (X,8). We say that a

hypergraph series v : H — K is recognizable if and only if there exists a HWM M such that
rv(G) =r(Q) for all G € H.

3.2 Properties

Propositions 1 and 2 show how HWMs extend linear representations on strings and trees.

Proposition 1. Let r : (V,¢,{M},ecx,T) be a rational series on ¥*. For any word w € ¥¥,
let Gy be the associated hypergraph on the ranked alphabet (X U {¢,7},1), whose construction
is described in Evample 2. Consider the HWM M : (V. AT} exuqirys Oids 1) where I7 = T,
T'=1vand T7 =M?° for all 0 € ¥. Then, r(w) = ry(Guw) for all strings w € ¥*.

Proposition 2. Let r: (V,pu, A) be a rational series on trees on the ranked alphabet F = (X,4).

For any tree t over F, let Gy be the associated hypergraph on the ranked alphabet (X U {\},1)
(see Example 3). There exist a HWM M such that rp(Gy) = r(t) for any tree t over F.

The following propositions show that the set of HWMs is closed under addition and Hadamard
product.

Proposition 3. Let A = (K™ {A%},ex,®a,a), and B = (K", {B*}.cx, ®p, ) be two HWMs.
Define the HWM C = (K™ {C%} ey, ®,7) by 7 = «a; if 1 < i < m and Bi—p, otherwise,

‘A’?L..iul- iflﬁil,...,iﬁmgm
Ci\ iy = ”;LHMI if m <iy,...,i4, < m+n where j =i —m for any k, and
0 otherwise,
€ Oaej if1<i,5<m
e;0ej =1 tn(e_mOp ej_m) ifm<i,7<n
0 otherwise

where tp, : K" — K™ s the linear mapping defined by t,,(ex) = €xrm for any 1 < k < n.

Then the HWM C computes the series ra+p defined by rayp(G) = ra(G) + re(G), for any
connected hypergraph G.



Proposition 4. Let A = (K™ {A%},ex, ®a, ) and B = (K", {B*},cx, ©p, 3) be two HWMs.

Identifying K™ @ K" with K™ wvia the mapping e; ® e; — €,(;_1)4;, we define the HWM
D = K" @ K" {D*},ex,©,0) by D* = A* @ B for all z € X, (a1 ® by) © (ag ® by) =
(a1 ©4a2) ® (by ©®p by) for all aj,ay € K™ and by, by € K", and § = a® B (i.e. §' (a®b) =
(aTa)(BTb) for any a € K™ and b € K").

Let ra (resp. rp) be the series computed by A (resp. by B). Then the HWM C computes the
series To(G) = ra(G)rg(G), for any hypergraph G.

4 Recognizability of Finite Support Series

In this section, we show that finite support series (i.e. polynomes) are not recognizable in general,
but we exhibit a wide class of families of hypergraphs for which they are.

First, we show on a simple example why polynomes are not recognizable for all families of
hypergraphs. Consider the family of circular strings over a one letter alphabet ¥ = {a} intro-
duced in Example 4 and Remark 3. The following lemma implies that the series r, defined by
r(Go) = 1 and (G x) = 0 for all integer k > 1, is not recognizable. Indeed, r would be such that
7(G ) = Tr(MF) = 0 for all k > 2, but it then follows from Lemma 1 that r(G,) = Tr(M,) = 0.

Lemma 1. Let M € R™*". [f Tr(M*) =0 for all k > 2, then Tr(M) = 0.

This example illustrates the fact that the computation of a HWM on a hypergraph G is done
independently on each hyperedge of G. This implies that if two hypergraphs are not distin-
guishable by just looking at the ports involved in their hyperedges, the computations of a HWM
on these two hypergraphs are strongly dependent. This is clear if we consider a hypergraph G;
made of two copies of a hypergraph Gs (i.e. G1 has two connected components, which are both
isomorphic to G): we have r(G1) = r(G2)? for any HWM r (see Remark 4).

The following section formally introduces the notion of tiling of a hypergraph G and show how
this relation between hypergraphs relates to the question of the recognizability of polynomes.

4.1 Tilings

A tiling of a hypergraph Gisa hypergraph G, built on the same alphabet and made of copies
of G. More precisely,

Definition 6. Let G = (V,E,A) be a hypergraph over a ranked alphabet (¥,8). A hypergraph
G = (V,E,l) on the same alphabet (X,f) is a tiling ofé if and only if there exists a mapping
f:V =V such that (i) l(v) = 1(f(v)) for any v € V and (ii) the mapping g : Pg — Pg defined
by g(v,i) = (f(v),7) is such that for all h € E: g(h) € E and the restriction g of g to h is
bijective.

The following proposition shows that for a connected hypergraph, this formal definition of tiling
is equivalent to the intuition of a hypergraph made of copies of the original one.

Let G = (V, E, 1) be a tiling of the connected hypergraph G = (‘7, E, A), let ~y be the equivalence
relation defined on V by v ~y o' iff f(v) = f(v'), and let ~g be the equivalence relation defined
on E by h ~p h'iff g(h) = g(h') where f and g are the mappings defined above. Clearly, v ~y v/
entails that I(v) = [(v') and it can easily be shown that h ~g k' iff 30 € h,v/® e b/ such that
v ~y v'. We can thus define the quotient hypergraph G = (V/ ~,, E/ ~g,1).

Proposition 5. If G = (V,E,l) is a tiling of a connected hypergraph CA;A: (‘A/,E,A), then
G = (V] ~y,E/ ~g,l) is isomorphic to G and moreover, for any v € V, the cardinal of
f~Y({9}) is a constant.



Figure 2: A tiling made of three copies of the hypergraph from Example 1

We end this section with the main result of this paper: there exists a HWM which assigns a
nonzero value to a specific hypergraph over some ranked alphabet and all of its tilings, and zero
to any other hypergraph on the same alphabet. This result leads to a sufficient condition on
families of hypergraphs for the recognizability of finite support series.

Theorem 1. Given a hypergraph G= (17, E,l/\) over (3,1), there exists a recognizable series ra
such that r5(G) # 0 if and only if G is a tiling of G.

A family H of hypergraphs is tiling-free if and only if for any G € H, there are no (non-trivial)
tiling of G in H.

Corollary 1. For any tiling-free family of hypergraphs H, finite support series on ‘H are recog-
nizable.

An example of tiling-free family is the family of rooted hypergraphs: hypergraphs on a ranked
alphabet (X U {A},#), where the special root symbol A appears exactly once. Some illustrations
of the expressiveness of HWM’s can be found in [1].

5 Conclusion

The model we propose naturally generalizes rational series on strings and trees. It satisfies
closure properties by sum and Hadamard product. We have analysed why finite support series
on some families of hypergraphs are not recognizable, and we exhibit a sufficient condition on
families of hypergraph for the recognizability of finite support series.

These results suggest that the notion of HWM naturally extends the notion of linear represen-
tation for strings and trees, and that the set of recognizable series could be a natural extension
of rational series to hypergraphs.

We plan to study how techniques and methods developed in the field of graphical models, such
as message passing, variational methods, etc, could be adapted to the setting of HWM. The
question of learning HWM from samples also emerges naturally, and could be relevant to the
data mining community [5]. Learning algorithms should rely on tensor decomposition techniques,
which generalize the spectral methods used for learning rational series on strings and trees. This
is a work in progress.
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