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1 Introduction

In the present work, we look at tilings of a k×n board (n, k ∈ N) by 1×1(small)
and 2× 2 (big) squares with no holes or overlaping. The goal is to understand
how the average proportion of small squares in tilings of a k × n rectangle by
small and big squares changes when k, n → +∞. A simpler problem (and the
one we study here) is to consider that k is fixed and n→ +∞.

There has been some work done on the subject. When k = 2, tilings of a
2×n rectangle by 1×1 and 2×2 squares correspond to the Fibonacci sequence.
For k = 3, one can easily show that the number of ways to cover a 3×n rectangle
with 1× 1 and 2× 2 squares is equal to 1

3 (−1)n + 1
32n+1. Explicit formulas for

the number of tilings for k up to 5 were obtained by Heubach S. [2, 3] The bigger
cases, however, seem to need the use of other methods.

This abstract consists of two main sections. In Section 2 we define a set
of Bivariate Generating Functions (BGFs) associated with tilings of a k × n
rectangle, present formulas and calculate distribution of small squares in tilings
for k up till 10. In Section 3 we introduce an automaton construction that rep-
resents BGFs and their relations. We extract some properties on its structure,
present a simplification algorithm that allows to find BGFs more easily.

2 Settings, definitions

2.1 Bivariate Generating Functions

In order to study the general case, we introduce BGFs. Let us define them for
the case k = 4 and then generalize the definition. Let

Q0000(z, u) =
∑
n,p

A4
n,pz

nup

be a BGF where the coefficient of znup (A4
n,p) is the number of tilings of a 4×n

rectangle with exactly p small squares.
Let Q1000(z, u) be a BGF with the coefficient of znup being the number

of tilings of a 4 × n rectangle with a 1 × 1 square cut off from the upper left
corner and Q2200(z, u) a BGF with the coefficient of znup corresponding to the
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number of tilings of a 4×n rectangle with a 2× 2 square cut off from the upper
left corner (illustrations are shown in Figure 1).
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Figure 1: 4× n board with cut off corners

From this point on, we will write BGFs without arguments, always meaning
that they are z, u. A relation on Q0000, Q1000 and Q2200 can be expressed in
the following way:

Q0000 = zuQ1000 + z4Q2200.

Indeed, in order to obtain Q0000, we can either cut off a small square or a
big one from the upper left corner. The remaining areas will correspond either
to Q1000 or Q2200. And because we cut off squares we need to multiply Q1000

by zu (z corresponds to the area occupied by a small square, u – to the one
small square) and Q2200 by z4 respectively. In the same way we can introduce,
e.g., Q1100 and Q1220, and a relation on them and Q1000.

At each step we change indexes of Qi1i2i3i4 by going from left to right in the
following way: we permit changing either one 0 to 1 or 00 to 22, which means
changing the left one or two columns of the board that was obtained at the
previous step by cutting off either a 1× 1 or a 2× 2 square from the upper left
corner of the board.

As soon as we get to Qi1i2i3i4 with all indexes being different from zero,
we use a tetris rule and reduce the indexes of Qi1i2i3i4 by one layer with ”no
charge”. For example, Q1122 gets reduced to Q0011, Q1111 to Q0000 and so on.

Using this technique one obtains a finite set of BGFs Qi1i2i3i4 and a system
of functional equations on them. For k ≥ 5, the principle of constructing a set
of Qi1...ik and a system of functional equations is the same.

2.2 Combinatorical results

Using traditional combinatorical tools (see, e.g., [1]) we can find formulas for
our BGFs and extract some properties. We can solve a system of equations
and find Q0...0(z, u) for small k. It starts getting complex for k ≥ 10 given that
the size of the associated matrix grows exponentially.
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For example, for k = 4

Q0000(z, u) =
1− z4

1− z4 − z4u4 − 2z8u4 − z8 + z12u4 + z12

The coefficient of zn in Q0000(z, 1) corresponds to the number tilings of a
4 × n rectangle without restriction on the number of small squares. These
coefficients satisfy the recurrence equation: an = 2an−1 + 3an−2 − 2an−3 with
a0 = a1 = 1, a2 = 5 [A054854] [4].

For every Q0...0(z, u) (with k zero indexes) let z0 be the singularity closest
to zero. Then

∂uQ0...0(z, u)

z∂zQ0...0(z, u)

∣∣∣∣
(1,z0)

gives us average proportion of space occupied by small squares in tilings of
a k × n rectangle.

Average proportions of space occupied by small squares for k ≤ 10 are shown
in the table below.

k z0 %
3 0.7937 55.555
4 0.7721 46.954
5 0.7701 49.507
6 0.7642 47.241
7 0.7621 47.759
8 0.7596 47.029
9 0.7586 47.651

10 0.7656 46.923

The sequence of proportions seems to be converging. The question is,
whether it indeed converges and if so, what is its limit?

3 Automaton representation

For each k let us introduce an automaton. Each Qi1...ik with ij ∈ {0, 1, 2} for
j = 1, . . . k is associated with a state q = i1...ik and each functional equation
involving BGFs is translated into an automaton transition. For example, the
relation

Q0000 = zuQ1000 + z4Q2200.

is represented in the following way: an arrow marked by zu goes from the state
1000 to the state 0000, an arrow marked by z4 goes from the state 2200 to the
state 0000. When the tetris rule is applied, we will mark corresponding arrows
by a star. An illustration of an automaton for k = 4 is shown in Figure 2.
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Calculation of paths in the automaton that start and end at the state 0 . . . 0
will allow us to find formulas for Q0...0. Our objective is to decrease computa-
tional complexity by reducing the number of states.
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Figure 2: Automaton for k = 4

3.1 Essential, non-essential and additional states

Definition 1. A state q of an automaton is called essential if there are at least
two arrows coming in and out of q and at least one of the arrows coming out is
marked by a star. It is called non-essential otherwise.

Note: We consider the state 0 . . . 0 to be essential.
Let Ek be the set of all essential states for each k ≥ 4. From Figure 2 we

get E4 = {0000, 1100} and | E4 |= 2. Let us describe the structure of Ek and
find | Ek | .

Proposition 1. A state q = i1...ik of an automaton is essential if and only if
q has the following propertries:
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1. q consists only of 0 and 1;

2. All 1 come in pairs in q;

3. i1 = i2 = 1;

4. The leftmost 0 in q comes in pair with another 0.

Commentary: Let us point out one more time that we consider that the
state 0 . . . 0 is always essential.

Proposition 2. For k ≥ 4 the number of essential states | Ek | in the automaton
is represented by the following formula:

| Ek |=
b k−2

2 c∑
i=1

i∑
j=1

(
k − i− j − 2

i− j

)
+ 1.

Definition 2. A state is called additional if it belongs to a cycle that doesn’t
include any essential state.

Note that only non-essential states can be additional. The interest of looking
at additional states is merely because in order to properly reduce an automaton
we need to pay attention to all the cycles in the automaton.

Let us define a subset of the set of additional states that that have the same
structure as essential states but with an odd number of 1 on the left from the
leftmost 0. We denote this set by AE

k for k ≥ 5 and the states by q1, . . . , qN . It
follows from Proposition 2 that N =| Ek−1 | −1.

Proposition 3. Each state from AE
k is additional and generates at least one

cycle that doesn’t contain any essential state.

Now the question is, if we mark all the states from Ek and AE
k in the au-

tomaton, will it ensure that there will be no cycles left that don’t contain the
marked states? Proving that will justify our choice for keeping these particular
states.

Proposition 4. Let q = i1 . . . ik be a state of the automaton that doesn’t belong
to AE

k ∪Ek. If q belongs to a cycle, then this cycle contains states from AE
k ∪Ek.

We shall further refer to the states from AE
k as E-additional states.

3.2 Simplified automata

We can simplify an automaton by keeping only essential and E-additional states
and reducing all other states. The rules of reduction are shown in Figure 3. We
denote as fij a transition between states qi and qj which is represented by an
arrow going from qi to qj .

Using the rules of reduction we obtain an automaton. For each k the result is
unique and doesn’t depend on the order in which we apply the rules of reduction.

Reduced automata for cases k = 4, 5 are shown in Figure 4 and 5.
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Figure 3: Rules of reduction for an automaton
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Figure 4: Reduced automaton for k = 4
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Figure 5: Reduced automaton for k = 5
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