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Abstract

We study the purely periodic β-expansions of rational numbers. We give an algorithm
for determining the value of the function γ(β) for quadratic Pisot numbers β. For numbers
satisfying β2 = aβ + b with b dividing a, we show a necessary and sufficient condition for
γ(β) = 1, i.e., that all rational numbers p/q ∈ [0, 1) with gcd(q, b) = 1 have a purely periodic
β-expansion.

1 Introduction

Rényi β-expansions [Rén57] provide a very natural generalization of standard positional numer-
ation systems such as the decimal system. Expansions of numbers x ∈ [0, 1) can be defined in
terms of a transformation. Let β > 1 denote the base. Then the β-transformation is the map

T : [0, 1)→ [0, 1), x 7→ βx− bβxc. (1.1)

The expansion of x is the infinite string x1x2x3 · · · where xj := bβT j−1xc. It is a well-known
fact that for β ∈ N, the β-expansion of x ∈ [0, 1) is eventually periodic (i.e., there exists p, n
such that xk+p = xp for all k ≥ n) if and only if x ∈ Q. This result was generalized to all Pisot
bases by Schmidt [Sch80], who proved that for a Pisot number β the expansion of x ∈ [0, 1) is
eventually periodic if and only if x is an element of the algebraic field Q(β). Moreover, he showed
that when β satisfies β2 = aβ + 1, then all x ∈ [0, 1) ∩Q have a purely periodic β-expansion.

Akiyama [Aki98] showed that if β is a Pisot unit satisfying a certain finiteness property called
(F’) then there exists c > 0 such that all rational numbers x ∈ Q ∩ [0, c) have a purely periodic
expansion. If β is not a unit, then a rational number p/q ∈ [0, 1) can have a purely periodic
expansion only if q is co-prime to the norm N(β). We denote Zb the set of rational numbers
p/q with gcd(q, b) = 1. Many Pisot non-units satisfy that there exists c > 0 such that all
x ∈ ZN(β) ∩ [0, c) have purely periodic expansion. This stimulates for the following definition:

Definition 1.1. Let β be a Pisot number, and let N(β) denote the norm of β. Then we define
γ(β) ∈ [0, 1] as the infimum of positive p/q ∈ Q with gcd(q,N(β)) = 1 and with not purely
periodic β-expansion:

γ(β) := inf
{p
q : p, q > 0, gcd(q,N(β)) = 1, pq does not have a purely periodic β-expansion

}
.
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The question is how to determine the value of γ(β). As well, knowing when γ(β) = 0 or 1 is of
big interest.

The transformation T possesses an ergodic invariant measure. Therefore this transformation on
the interval [0, 1) forms a dynamical system. It is easy to observe that the expansion of x is
purely periodic if and only if x is a periodic point of T , i.e., there exists p ≥ 1 such that T px = x.
The natural extension (X , T ) of ([0, 1), T ) can be defined in an algebraic way, cf. (2.1). Taking
this form of the natural extension, several authors contributed to proving the following result:
A point x ∈ [0, 1) has purely periodic β-expansion if and only if x ∈ Q(β) and its diagonal
embedding lies in the natural extension domain X . The quadratic unit case was solved by
Hama and Imahashi [HI97], the confluent unit case by Ito and Sano [IS01, IS02]. Then Ito and
Rao [IR05] resolved the unit case completely using an algebraic argument. For non-unit bases β,
one has to consider finite (p-adic) places of the field Q(β). This consideration allowed Berthé
and Siegel [BS07] to expand the result to all (non-unit) Pisot numbers.

The first values of γ(β) for two particular non-units were provided by Akiyama, Barat, Berthé
and Siegel [ABBS08]. Recently, Minervino and Steiner [MS14] described the boundary of X for
quadratic non-unit Pisot bases. This allowed them to find the value of γ(β):

Theorem 1.2 ([MS14]). Let β be the positive root of β2 = aβ + b for a ≥ b > 0 two co-prime
integers. Then

γ(β) =

{
1− (b−1)bβ

β2−b2 ∈ (0, 1) if a > b(b− 1),
0 otherwise.

2 Preliminaries

Combinatorics on words. We consider both finite and infinite words over a finite alphabet A.
The set of finite words over A is denoted A∗. An infinite word is (eventually) periodic if it is
of the form v(u)ω = vuuu · · · ; v ∈ A∗ is the pre-period and u ∈ A∗ \ A0 is the period; if the
pre-period is empty, we speak about a purely periodic word. The set of all infinite words over
A is denoted Aω, and it is equipped with the Cantor topology. A prefix of a (finite or infinite)
word w is any finite word v such that w can be written as w = vu for some word u. We denote
by Pref(Ω) for Ω ⊆ Aω the set of all finite prefixes of words in Ω.

For a finite word u = u0u1 . . . uk−1 and an arbitrary number α we define a natural polynomial
representation of the word as

P (α, u) :=

k−1∑
i=0

uiα
i.

This definition is extended to infinite words by taking a limit if the limit exists.

Representation spaces and beta-tiles. We adopt the notation of [MS14], however, we
restrict ourselves to β being a quadratic Pisot number. Let K = Q(β). Since β is quadratic, we
know that there are exactly two infinite places of K. In one of them, the norm of x is the absolute
value |x|; in the second one, K ′, the norm of x is |x′| where x → x′ is the unique non-identical
Galois isomorphism of K. Both these places have R as their completion.

If β is not a unit, then we have to consider finite places ofK as well. We put Kf :=
∏

p|(β)Kp. The
convergence inKf can be expressed in terms of β-adic expansions, cf. §3. Finally, K := K×K ′×Kf

and K′ := K ′ ×Kf . We define the diagonal embeddings

δ : Q(β)→ K, x 7→ (x, x′, xf) and δ′ : Q(β)→ K′, x 7→ (x′, xf),
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Figure 1: The two boundaries of the tile Q(0) for β = 1 +
√

3.

where xf is the vector of the embeddings of x into the spacesKp. As well, we define the projections
π1 : K→ K and π2 : K→ K ′. We put P ′(u) = P (β′, u) and Pf(u) = P (β, u)f for every word u.

For x ∈ [0, 1), we define the β-tile of x as the Hausdorff limit

Q(x) := lim
i→∞

δ′
(
x− βkT−k(x)

)
⊆ K′.

Note that the standard definition of a β-tile for x ∈ Z[β−1] ∩ [0, 1) is R(x) := δ′(x)−Q(x). We
now describe the natural extension (X , T ) of the dynamical system ([0, 1), T ) as a subset of the
representation space K. For quadratic Pisot β, root of β2 = aβ + b with a ≥ b ≥ 1, it comprises
of two suspensions of β-tiles:

X :=
(
[0, β − a)×Q(0)

)
∪
(
[β − a, 1)×Q(β − a)

)
,

T : X → X , z 7→ βz − δ
(
bβπ1(z)c

)
. (2.1)

It is remarkable that the natural extension given by this formula is not a closed set, for with the
given definition, the following important result holds:

Theorem 2.1 ([HI97, IR05, BS07]). For a Pisot number β, we have that x has a purely periodic
β-expansion if and only if x ∈ Q(β) and δ(x) ∈ X .

3 Hensel expansions of quadratic numbers

Throughout the rest of the paper, we will fix arbitrary quadratic Pisot number β, root of β2 =
aβ + b with a ≥ b ≥ 1. Let Zb := {p/q : p ∈ Z, gcd(q, b) = 1} be the set of rational numbers
whose denominator is co-prime to b.

The map Pf is a homeomorphism (a bijection that is continuous both ways) from Aω to Zb[β]f ,
where the alphabet is A := {0, 1, . . . , |N(β)| − 1}. Its inverse is the Hensel expansion map
h : Zb[β]f → Aω, whose fundamental property is that for x ∈ Zb[β], the Hensel expansion
h(x) = x0x1x2 · · · satisfies that

x−
n∑
i=0

xiβ
i ∈ βnZb[β] for all n ≥ 0. (3.1)

In §9.3 of the article [MS14], the boundary of β-tiles Q(0) and Q(β − a) is described. The tiles
have two boundaries: ∂+Q(x) on the right and ∂−Q(x) on the left (see Figure 1). We have

∂+Q(0) = ∂+Q(β − a) =
{(

1 + P ′(u), 1f + Pf(u)
)

: u ∈ Aω
}
,

∂−Q(0) =
{(
β′ − a+ P ′(u), βf − af + Pf(u)

)
: u ∈ Aω

}
, (3.2)

∂−Q(β − a) =
{(
β′ − a+ 1 + P ′(u), βf − af + 1f + Pf(u)

)
: u ∈ Aω

}
(all these sets lie in K′). We can express the value of γ(β) easily in terms of the boundaries:



Theorem 3.1. Let β be a quadratic Pisot number. Denote Y ′ := K ′ × (Z)f ⊆ K′ and put

γ̄ := inf π2
(
∂+Q(0) ∩ Y ′

)
. (3.3)

If supπ2
(
∂−Q(0) ∩ Y ′

)
> 0, then γ(β) = 0. Otherwise if supπ2

(
∂−Q(β − a) ∩ Y ′

)
> 0, then

γ(β) = min{β − a,max{γ̄, 0}}. Otherwise γ(β) = max{γ̄, 0}.

Remark 3.2. We can change Z in the statement of the theorem to Zb or to Zb∩[c, d] for arbitrary
c < d since we have that (Z)f = (Zb)f = (Zb ∩ [c, d])f .

For many cases, we obtain the following direct formula:

Corollary 3.3. Let β be a quadratic Pisot number, root of β2 = aβ + b for a ≥ b ≥ 1. Suppose
a > 1+

√
5

2 b or a = b or gcd(a, b) = 1. Then

γ(β) = max
{

0, inf π2
(
∂+Q(x) ∩ Y ′

)}
. (3.4)

For the boundary, we observe the following thing, which follows from the fact that the boundary
is continuous as a function from Z[β]f → K ′:

Lemma 3.4. For every n ∈ N, we have that each of the boundaries ∂±(x) for x ∈ {0, β − a} is
contained in a union of rectangles,

∂+Q(x) ⊂
⋃

w∈An

(
1 + P ′(w) + (β′)n b−1

1−(β′)2 [β′, 1]
)
×
(
1f + Pf(wAω)

)
,

∂−Q(0) ⊂
⋃

w∈An

(
β′ − a+ P ′(w) + (β′)n b−1

1−(β′)2 [β′, 1]
)
×
(
βf − af + Pf(wAω)

)
, (3.5)

∂−Q(β − a) ⊂
⋃

w∈An

(
β′ − a+ 1 + P ′(w) + (β′)n b−1

1−(β′)2 [β′, 1]
)
×
(
βf − af + 1f + Pf(wAω)

)
.

Proposition 3.5. Let Ly for y ∈ Z[β] be the language of prefixes of Hensel expansions of numbers
from the set Z− y, i.e., Ly := Pref

{
h(k + y) : k ∈ Z

}
. Then for each n ∈ N and x ∈ {0, β − a}

we can estimate

inf π2
(
∂+Q(x) ∩ Y ′

)
∈ 1 + min

{
P ′(w) : w ∈ L0 ∩ An

}
+ (β′)n b−1

1−(β′)2 [β′, 1],

supπ2
(
∂−Q(0) ∩ Y ′

)
∈ β′ − a+ max

{
P ′(w) : w ∈ Lβ ∩ An

}
+ (β′)n b−1

1−(β′)2 [β′, 1], (3.6)

supπ2
(
∂−Q(β − a) ∩ Y ′

)
∈ β′ − a+ 1 + max

{
P ′(w) : w ∈ Lβ ∩ An

}
+ (β′)n b−1

1−(β′)2 [β′, 1].

The right-hand sides of (3.6) are itervals whose lengths shrink exponentially when n→∞. The
only remaining step is to construct the languages Lx ∩ An, which is solved by the following
statement:

Proposition 3.6. Let x, z ∈ Z[β] satisfy that x − z ∈ bnZ for some n ∈ N. Then the Hensel
expansions h(x) and h(z) have a common prefix of the length at least n.

Therefore all elements of Ly of the length n are precisely

Ly ∩ An = Pref
{
h(y + k) : k ∈ {0, 1, . . . , bn − 1}

}
∩ An, whence #(Ly ∩ An) ≤ bn. (3.7)

4 The case b divides a

In the particular case when b divides a, the structure of Ly is even simpler, namely we have that
#(Ly ∩An) = bdn/2e, therefore #(Ly ∩A2n) = #(Ly ∩A2n−1). This is given by the fact that in
this case, bkZ[β] = β2kZ[β]. The result for this case can be stated as follows:



a/b = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 ? 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 ? ? 1 1 1 1 1 1 1 1 1 1 1 1
5 0 ? ? ? 1 1 1 1 1 1 1 1 1 1 1
6 0 ? ? 1 1 1 1 1 1 1 1 1 1 1 1
7 0 ? ? ? ? ? 1 1 1 1 1 1 1 1 1
8 0 ? ? ? ? ? ? 1 1 1 1 1 1 1 1
9 0 ? ? ? ? ? ? ? 1 1 1 1 1 1 1

10 0 ? ? ? ? ? ? ? ? 1 1 1 1 1 1
11 0 0 ? ? ? ? ? ? ? ? 1 1 1 1 1
12 0 0 ? ? ? ? ? ? ? ? ? 1 1 1 1

Table 1: The values of γ(β) for the case when b divides a. The ‘?’ means that the value is strictly
between 0 and 1.

a b γ(β)

2 2 0.914803044196 · · ·

6 3 0.992963560101 · · ·

8 4 0.933542944675 · · ·
12 4 0.999897789000 · · ·

10 5 0.834150794175 · · ·
15 5 0.995306723671 · · ·
20 5 0.999999907110 · · ·

a b γ(β)

12 6 0.736114178272 · · ·
18 6 0.993897266395 · · ·

14 7 0.584906533458 · · ·
21 7 0.944526094618 · · ·
28 7 0.997984788082 · · ·
35 7 0.999986041767 · · ·
42 7 0.99999999999971 · · ·

Table 2: Numerical values of γ(β) that correspond to the first couple ‘?’ in Table 1.

Theorem 4.1. Let β be a quadratic Pisot number, root of β2 = aβ + b with a, b > 0 and a
b ∈ Z.

We have that γ(β) = 1 if and only if a ≥ b2 or (a, b) ∈ {(6, 24), (6, 30)}.
If a = b ≥ 3 then γ(β) = 0.

If b ≤ a ≤ b(b− 1) then γ(β) can be computed with arbitrary precision.

The two cases β2 = 24β + 6 and β2 = 30β + 6 are very exceptional. It is given by the fact that
for them, we have that b− (a/b) divides b, which is an important ingredient in their strangeness.
Table 1 shows whether γ(β) is 0, 1 or strictly in between, for b ≤ 12 and a/b ≤ 15. The first
non-trivial values are listed in Table 2.

Example 4.2. As an example, we will show the computation of γ(β) for β = 1 +
√

3, the Pisot
root of β2 = 2β + 2. Since b divides a, we know that we can choose every odd digit and the
even digit is then given uniquely. This allows us to consider shorter intervals than the ones in
Lemma 3.4, namely, [1 + P ′(w) + (β′)2n+1 b−1

1−(β′)2 , 1 + P ′(w)] for a prefix w of the length 2n.

The computation is shown in Figure 2. We start with the interval for the empty word, which is[
1 − β′(b−1)

1−(β′)2 , 1
]
. We then take the two values 0, 1 for the 1st digit; the second digit is fixed by

this and we get the two prefixes 00 and 10. However, the interval for 10 does not overlap the
left-most interval (the one for 00 in this case), therefore we can ‘forget’ it. In each step, we then
extend the length of the prefixes by two and we ‘forget’ the intervals that do not overlap the
left-most one. The value of γ(β) lies in the left-most interval. Already in the 5th step we obtain
that γ(β) ∈ [0.922, 0.971] therefore it is strictly between 0 and 1.
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00 10
00 00 00 11

00 00 00 00 00 1000 11 00 00 11 10
00 00 00 00 00 00 00 1100 11 00 01 00 11 00 10
00 00 00 00 00 00 00 00 00 1000 00 00 11 00 00 00 00 11 1000 11 00 01 01 00 11 00 01 11

00 00 00 00 00 00 00 00 00 00 00 1100 11 00 01 01 01 00 11 00 01 01 10
00 11 00 01 01 01 01 00 11 00 01 01 10 11

00 11 00 01 01 01 01 00 00 11 00 01 01 10 01 11
00 11 00 01 01 01 01 00 01 00 11 00 01 01 10 01 00 1100 11 00 01 01 01 01 11 00 00 11 00 01 01 10 01 11 11

Figure 2: The computation of γ(1 +
√

3). By a thick line we denote the intervals that we keep,
by a thin line the ones that we ‘forget’.
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