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Abstract

We study the structure of the lexicographically least infinite ¢-power-free word on the

alphabet Z>(, showing that for many rationals 7 this word is a fixed point of a uniform
morphism.

1 Introduction

Beginning with work of Thue [8, [, 4], researchers have been interested in the avoidability of
repetitions in infinite words. For example, it is easy to see that nonempty squares (words of the
form ww where w is a nonempty word) are unavoidable in sufficiently long words on a binary
alphabet, but Thue exhibited an infinite square-free word on a ternary alphabet.

Here we are interested in avoiding fractional powers. Let a and b be relatively prime positive
integers. If v = v1vg - --v; is a nonempty word whose length [ is divisible by b, define

a/b

v = Uta/bJ V102 * * * Vl.frac(a/b)s

where frac($) = § — [ %] is the fractional part of 7. We say that v¥/? is an 7-power. Note that
lv/b| = Zlv[. If § > 1, then a word w is an §-power if and only if w can be written v°z where e

is a non-negative integer, z is a prefix of v, and |w|/|v| = a/b. For example, 011101 = (0111)?/2

is a %—power. We say that a word is 7-power-free if none of its nonempty factors are 3-powers.
Avoiding %—powers, for example, means avoiding factors xyx where |z| = |y| > 1. Avoiding

5_powers means avoiding factors zyzuz where |z| = |y| = |2| = |u| > 1.

If one does not know whether ¢-powers are avoidable on a given alphabet X, it is common to gain
intuition by choosing an order for ¥ and attempting to construct a long finite 3-power-free word
by using the standard backtracking algorithm. If an infinite 7-power-free word on ¥ does not
exist, then the backtracking algorithm will identify the length of the longest #-power-free words.
If an infinite 7-power-free word on X does exist, then the backtracking algorithm eventually
computes prefixes of the lexicographically least such word. The lexicographically least -power-
free word is a canonical representative of the set of 3-power-free words, so its structure is of
interest.

On (ordered) finite alphabets, there has not been much success in identifying the structure of
the lexicographically least infinite §-power-free word. Even characterizing the lexicographically
least square-free word on {0, 1,2} is an open problem [3, §1.10].

On an infinite alphabet, however, the problem seems to be more tractable.
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Notation. Let a and b be relatively prime positive integers such that ¢ > 1. We define w,,
to be the lexicographically least infinite word on Zx>g avoiding f-powers.

Guay-Paquet and Shallit [6] showed that the lexicographically least square-free word on Zxg is
wy = 01020103010201040102010301020105 - - - .

More generally, for an integer a > 2 we have w, = ¢“(0), where ¢ : ZL; — Z% is the morphism
defined by p(n) = 091 (n+1). The letters of w, satisfy the recurrence w(ai+(a—1)) = w,(i)+1
for all ¢+ > 0, where we index letters in a word beginning at 0.

Shallit and the second author [7] gave a recurrence for the letters of
w3/o = 001102100112001103 100113 001102100114 001103 100112 - - - .

The word w9 is 6-regular in the sense of Allouche and Shallit [1I, 2; informally, this means
that the ith letter can be computed directly from the base-6 digits of ¢. Part of the motivation
of the present study is to put this ‘6’ into context by studying w, , systematically.

In this extended abstract, we show that for many rational numbers 7, the word w, , is the fixed
point of a k-uniform morphism for some integer k. (Recall that a morphism ¢ on an alphabet
Y is k-uniform if |p(n)| =k for all n € X.)

2 Morphisms

It turns out that for § > 2 the word w,, is easy to describe. For example, for § = g one

computes
w5/2 = 00001 00001 00001 00001 00002 00001 00001 00001 00001 00002 - - -

and observes that wy/; agrees with ws on a long prefix. In fact these two words are the same.

More generally, for 3 > 2, the lexicographically least §-power-free word is a word we have

already seen.

Theorem 1. Let a,b be relatively prime positive integers such that § > 2. Then w, ), = W,.

Therefore it suffices to study w,, for rationals satisfying 1 < § < 2. As a first example, let’s
consider

ws/3 = 0000101 0000101 0000101 0000101 0000102 0000101 0000102 - - - .

By examining a prefix of w3, one guesses the following theorem, which establishes the structure
of W5/3.

Theorem 2. Let ¢ be the T-uniform morphism defined by
¢(n) = 000010(n + 1)
for alln € Z>o. Then wy;3 = ¢“(0).
Similarly, by examining a prefix of wyg 5, one guesses the following.
Theorem 3. Let ¢ be the 13-uniform morphism defined by
¢(n) = 000000001000(n + 1)

for alln € Z>o. Then wy/5 = ¢“(0).



At first it is not clear why 7 is the correct length for ws,3 and why 13 is the correct length for
wy,5. However, the two morphisms in these theorems are quite similar; they only differ in their
run lengths. In fact they belong to an infinite family of morphisms that generate words w, ,
for certain rationals, and we can generalize Theorems [2| and [3| as follows.

Theorem 4. Let a,b be relatively prime positive integers such that g < 7 <2andged(h,2) =1.
Let ¢ be the (2a — b)-uniform morphism defined by

p(n) =010 (n+1)
for alln € Z>o. Then wq, = ¢*(0).

On the other hand, there also seem to be many “sporadic” words w,, that are fixed points of
uniform morphisms but do not belong to general families. For example, the length k = |p(n)| =
733 for the morphism in the following theorem is somewhat mysterious in that it has no obvious
relationship to 8/5.

Theorem 5. There is a 733-uniform morphism
©(n) = 00000001001000001001000000010011 - - - 1001000000010100(n + 2)
such that wg 5 = ¢“(0).

There are two steps in the proof of each of these theorems. The first step is to verify that

the morphism ¢ is ¢-power-free (that is, p(w) is $-power-free whenever w is -power-free).

a

The second step is to verify that ¢ is lezicographically least with respect to  (that is, if w is
7-power-free and decrementing any letter introduces an 7-power, then decrementing any letter
in p(w) introduces an g-power ending at that position). Since the word 0 is §-power-free and
lexicographically least of its length, if ¢ is an 7-power-free, lexicographically least morphism

then w,, = ¢*(0).

3 Automatic verification that ¢ is j-power-free

Theorems |§| and [5| represent a small sample of the potential results regarding w,,; there are
several symbolic families of morphisms analogous to the family in Theorem [4] and many more
sporadic words as well. (Additionally, as we discuss in Section |4 some words are not fixed points
of morphisms but are nonetheless related to fixed points of morphisms.) Of course, one would
ideally prove a single theorem that captures all these cases. However, the structures are diverse
enough that it is not clear how to unify them. The next best thing, then, is to identify a general
proof scheme so that each individual proof may be carried out automatically. Here we briefly
describe how to automatically verify that a morphism is §-power-free.

The basic idea is that we use the special form of the morphisms that arise to reduce the statement
that ¢ is 3-power-free to a finite case analysis and then use software to carry out the case analysis.
In the case of an individual rational number (as in Theorem [5|) this is more or less straightforward
using the results below. However, for parameterized morphisms that are symbolic in a and b (as
in Theorem , a substantial amount of symbolic computation is required.

We use the following concept.

Definition. Let £ > 2 and £ > 1. Let ¢ be k-uniform morphism on Y. We say that ¢ locates
words of length ¢ if there exists an integer j such that, for all words w,z € ¥* with |z| = ¢,
every occurrence of the factor z in ¢(w) begins at a position congruent to j modulo k. That is,
the position of each x is uniquely determined modulo k.



The notion of locating words of length £ is related to the concept of a synchronization point
introduced by Cassaigne [0]. If ¢ locates words of length ¢, then it locates words of length ¢+ 1,
since if || = ¢+ 1 then the position of the length-¢ prefix of x is determined modulo k.

For example, the morphism ¢(n) = 000010(n + 1), for which w3 = ¢*(0), locates words of
length 4. Lemma [6] and Proposition [7] use the locating length to establish an upper bound on
the length of factors of p(w) that need to be checked to see if they are §-powers.

Lemma 6. Let a,b be relatively prime positive integers such that 1 < § < 2. Let k > 2 such that
ged(b, k) =1, and let £ > 1. Let ¢ be a k-uniform morphism on a (finite or infinite) alphabet %
such that

e © locates words of length £, and
e for all n,n’ € ¥, the words p(n) and o(n') differ in at most one position.

a/b

Then w contains an §-power whenever p(w) contains an §-power (xy)*® = xyx with |z| > {.

Proposition 7. Assume the hypotheses of Lemma @ Let Iyin € Q such that 1 < Iyin < ¢, and
let ¢ > d > 0 be integers such that { = ca — db. Suppose additionally that for every §-power-free
a/b — zyx of length am for m < LCII‘“%_dJ

min

word w € X* the word p(w) contains no §-power (zy)
Then ¢ is §-power-free.

Given particular values of £ and 7, we may have several choices of ¢, d, and of course there are
many choices for I,i,. But we apply Proposition [7] to families of morphisms for which Iiin, ¢, d
are fixed.

In light of Proposition[7] it remains to automate the verification that, for any sequence ng, n1, ...
and for finitely many values of m, no word of length am in p(ng)p(n1)--- is an §-power. For
each m in range we slide a window of length am through the word ¢(ng)e(n1)--- and verify
that no factor is an 3-power. For a symbolic morphism parameterized by a and b, this word is
necessarily given in its run-length encoding, with symbolic block lengths in @ and b. Therefore

we must be able to decide whether certain linear inequalities in a and b are true or false for 7

restricted to a given interval. If an inequality is true for some § in the interval and false for
other 7 in the interval, we restart the test with the interval broken into two subintervals at the

point where equality holds.

4 Scope

The statements of Theorems and many others that we have omitted here, were discovered by
computing prefixes of w, ;, for 910 different rationals 1 < 7 < 2. We have identified morphism-
related structure in w, /, for 520 of these 910 rationals. Not all of these words are fixed points
of uniform morphisms, but they satisfy some recurrence

Wo (ki + 1) =wg (i) +d (1)

for all ¢ > 0, where there is a transient length ¢ before the self-similar behavior, governed by a k-
uniform morphism, begins. The corresponding morphisms are 3-power-free but not necessarily
lexicographically least. The following is one of the more complex examples we have found.



Theorem 8. Let a, b be relatively prime positive integers such that % << % and ged(b,24) = 1.
Then the (24a — 15b)-uniform morphism

go(n) — Oafbfl 1 02a72b71 1 07a+2b71 1 02a72b71 1 Oafbfl 1 072a+3b71 1 O4a75b71 1
0—a+2b—1 1 020,—217—1 1 Oa—b—l 1 0—2a+36—1 1 O—2a+3b—1 1 05a—6b—1 1
0—2a+3b—1 1 04a—5b—1 1 Oa—b—l 1 O—2a+3b—1 1 03a—3b—1 1 0—2a+3b—1 1
Oafbfl 1 073a+4b71 1 05a76b71 1 O2a72b71 1 Oafbfl 1 072a+3b71 1

03(1—3()—1 1 O—2a+3b—1 1 04a—5b—1 1 Oa—b—l 1 O—2a+3b—1 1 02&—2b—1 2

Oa—b—l 1 O—2a+3b—l 1 03a—3b—1 1 O—2a+3b—l 1 Oa—b—l 1 Oa—b—l (n + 2)

locates words of length 5a — 4b and is 3 -power-free.

Words of the form ¢“(0) are k-regular when ¢ is k-uniform, and the words w,/, which aren’t
fixed points of morphisms but which satisfy Equation are also k-regular, so a natural question
is the following.

Open question. For which 1 < ¢ < 2 does there exist an integer k such that w,, , is k-regular?
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