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Abstract

We study the structure of the lexicographically least infinite a
b -power-free word on the

alphabet Z≥0, showing that for many rationals a
b this word is a fixed point of a uniform

morphism.

1 Introduction

Beginning with work of Thue [8, 9, 4], researchers have been interested in the avoidability of
repetitions in infinite words. For example, it is easy to see that nonempty squares (words of the
form ww where w is a nonempty word) are unavoidable in sufficiently long words on a binary
alphabet, but Thue exhibited an infinite square-free word on a ternary alphabet.

Here we are interested in avoiding fractional powers. Let a and b be relatively prime positive
integers. If v = v1v2 · · · vl is a nonempty word whose length l is divisible by b, define

va/b := vba/bcv1v2 · · · vl·frac(a/b),

where frac(ab ) = a
b − b

a
b c is the fractional part of a

b . We say that va/b is an a
b -power. Note that

|va/b| = a
b |v|. If a

b > 1, then a word w is an a
b -power if and only if w can be written vex where e

is a non-negative integer, x is a prefix of v, and |w|/|v| = a/b. For example, 011101 = (0111)3/2

is a 3
2 -power. We say that a word is a

b -power-free if none of its nonempty factors are a
b -powers.

Avoiding 3
2 -powers, for example, means avoiding factors xyx where |x| = |y| ≥ 1. Avoiding

5
4 -powers means avoiding factors xyzux where |x| = |y| = |z| = |u| ≥ 1.

If one does not know whether a
b -powers are avoidable on a given alphabet Σ, it is common to gain

intuition by choosing an order for Σ and attempting to construct a long finite a
b -power-free word

by using the standard backtracking algorithm. If an infinite a
b -power-free word on Σ does not

exist, then the backtracking algorithm will identify the length of the longest a
b -power-free words.

If an infinite a
b -power-free word on Σ does exist, then the backtracking algorithm eventually

computes prefixes of the lexicographically least such word. The lexicographically least a
b -power-

free word is a canonical representative of the set of a
b -power-free words, so its structure is of

interest.

On (ordered) finite alphabets, there has not been much success in identifying the structure of
the lexicographically least infinite a

b -power-free word. Even characterizing the lexicographically
least square-free word on {0, 1, 2} is an open problem [3, §1.10].

On an infinite alphabet, however, the problem seems to be more tractable.
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Notation. Let a and b be relatively prime positive integers such that a
b > 1. We define wa/b

to be the lexicographically least infinite word on Z≥0 avoiding a
b -powers.

Guay-Paquet and Shallit [6] showed that the lexicographically least square-free word on Z≥0 is

w2 = 01020103010201040102010301020105 · · · .

More generally, for an integer a ≥ 2 we have wa = ϕω(0), where ϕ : Z∗≥0 → Z∗≥0 is the morphism

defined by ϕ(n) = 0a−1(n+1). The letters of wa satisfy the recurrence wa(ai+(a−1)) = wa(i)+1
for all i ≥ 0, where we index letters in a word beginning at 0.

Shallit and the second author [7] gave a recurrence for the letters of

w3/2 = 001102 100112 001103 100113 001102 100114 001103 100112 · · · .

The word w3/2 is 6-regular in the sense of Allouche and Shallit [1, 2]; informally, this means
that the ith letter can be computed directly from the base-6 digits of i. Part of the motivation
of the present study is to put this ‘6’ into context by studying wa/b systematically.

In this extended abstract, we show that for many rational numbers a
b , the word wa/b is the fixed

point of a k-uniform morphism for some integer k. (Recall that a morphism ϕ on an alphabet
Σ is k-uniform if |ϕ(n)| = k for all n ∈ Σ.)

2 Morphisms

It turns out that for a
b ≥ 2 the word wa/b is easy to describe. For example, for a

b = 5
2 one

computes

w5/2 = 00001 00001 00001 00001 00002 00001 00001 00001 00001 00002 · · ·

and observes that w5/2 agrees with w5 on a long prefix. In fact these two words are the same.
More generally, for a

b ≥ 2, the lexicographically least a
b -power-free word is a word we have

already seen.

Theorem 1. Let a, b be relatively prime positive integers such that a
b ≥ 2. Then wa/b = wa.

Therefore it suffices to study wa/b for rationals satisfying 1 < a
b < 2. As a first example, let’s

consider

w5/3 = 0000101 0000101 0000101 0000101 0000102 0000101 0000102 · · · .

By examining a prefix of w5/3, one guesses the following theorem, which establishes the structure
of w5/3.

Theorem 2. Let ϕ be the 7-uniform morphism defined by

ϕ(n) = 000010(n + 1)

for all n ∈ Z≥0. Then w5/3 = ϕω(0).

Similarly, by examining a prefix of w9/5, one guesses the following.

Theorem 3. Let ϕ be the 13-uniform morphism defined by

ϕ(n) = 000000001000(n + 1)

for all n ∈ Z≥0. Then w9/5 = ϕω(0).



At first it is not clear why 7 is the correct length for w5/3 and why 13 is the correct length for
w9/5. However, the two morphisms in these theorems are quite similar; they only differ in their
run lengths. In fact they belong to an infinite family of morphisms that generate words wa/b

for certain rationals, and we can generalize Theorems 2 and 3 as follows.

Theorem 4. Let a, b be relatively prime positive integers such that 5
3 ≤

a
b < 2 and gcd(b, 2) = 1.

Let ϕ be the (2a− b)-uniform morphism defined by

ϕ(n) = 0a−1 1 0a−b−1 (n + 1)

for all n ∈ Z≥0. Then wa/b = ϕω(0).

On the other hand, there also seem to be many “sporadic” words wa/b that are fixed points of
uniform morphisms but do not belong to general families. For example, the length k = |ϕ(n)| =
733 for the morphism in the following theorem is somewhat mysterious in that it has no obvious
relationship to 8/5.

Theorem 5. There is a 733-uniform morphism

ϕ(n) = 00000001001000001001000000010011 · · · 1001000000010100(n + 2)

such that w8/5 = ϕω(0).

There are two steps in the proof of each of these theorems. The first step is to verify that
the morphism ϕ is a

b -power-free (that is, ϕ(w) is a
b -power-free whenever w is a

b -power-free).
The second step is to verify that ϕ is lexicographically least with respect to a

b (that is, if w is
a
b -power-free and decrementing any letter introduces an a

b -power, then decrementing any letter
in ϕ(w) introduces an a

b -power ending at that position). Since the word 0 is a
b -power-free and

lexicographically least of its length, if ϕ is an a
b -power-free, lexicographically least morphism

then wa/b = ϕω(0).

3 Automatic verification that ϕ is a
b -power-free

Theorems 4 and 5 represent a small sample of the potential results regarding wa/b; there are
several symbolic families of morphisms analogous to the family in Theorem 4 and many more
sporadic words as well. (Additionally, as we discuss in Section 4, some words are not fixed points
of morphisms but are nonetheless related to fixed points of morphisms.) Of course, one would
ideally prove a single theorem that captures all these cases. However, the structures are diverse
enough that it is not clear how to unify them. The next best thing, then, is to identify a general
proof scheme so that each individual proof may be carried out automatically. Here we briefly
describe how to automatically verify that a morphism is a

b -power-free.

The basic idea is that we use the special form of the morphisms that arise to reduce the statement
that ϕ is a

b -power-free to a finite case analysis and then use software to carry out the case analysis.
In the case of an individual rational number (as in Theorem 5) this is more or less straightforward
using the results below. However, for parameterized morphisms that are symbolic in a and b (as
in Theorem 4), a substantial amount of symbolic computation is required.

We use the following concept.

Definition. Let k ≥ 2 and ` ≥ 1. Let ϕ be k-uniform morphism on Σ. We say that ϕ locates
words of length ` if there exists an integer j such that, for all words w, x ∈ Σ∗ with |x| = `,
every occurrence of the factor x in ϕ(w) begins at a position congruent to j modulo k. That is,
the position of each x is uniquely determined modulo k.



The notion of locating words of length ` is related to the concept of a synchronization point
introduced by Cassaigne [5]. If ϕ locates words of length `, then it locates words of length `+ 1,
since if |x| = ` + 1 then the position of the length-` prefix of x is determined modulo k.

For example, the morphism ϕ(n) = 000010(n + 1), for which w5/3 = ϕω(0), locates words of
length 4. Lemma 6 and Proposition 7 use the locating length to establish an upper bound on
the length of factors of ϕ(w) that need to be checked to see if they are a

b -powers.

Lemma 6. Let a, b be relatively prime positive integers such that 1 < a
b < 2. Let k ≥ 2 such that

gcd(b, k) = 1, and let ` ≥ 1. Let ϕ be a k-uniform morphism on a (finite or infinite) alphabet Σ
such that

• ϕ locates words of length `, and

• for all n, n′ ∈ Σ, the words ϕ(n) and ϕ(n′) differ in at most one position.

Then w contains an a
b -power whenever ϕ(w) contains an a

b -power (xy)a/b = xyx with |x| ≥ `.

Proposition 7. Assume the hypotheses of Lemma 6. Let Imin ∈ Q such that 1 < Imin < a
b , and

let c ≥ d ≥ 0 be integers such that ` = ca− db. Suppose additionally that for every a
b -power-free

word w ∈ Σ∗ the word ϕ(w) contains no a
b -power (xy)a/b = xyx of length am for m ≤ b c·Imin−d

Imin−1 c.
Then ϕ is a

b -power-free.

Given particular values of ` and a
b , we may have several choices of c, d, and of course there are

many choices for Imin. But we apply Proposition 7 to families of morphisms for which Imin, c, d
are fixed.

In light of Proposition 7, it remains to automate the verification that, for any sequence n0, n1, . . .
and for finitely many values of m, no word of length am in ϕ(n0)ϕ(n1) · · · is an a

b -power. For
each m in range we slide a window of length am through the word ϕ(n0)ϕ(n1) · · · and verify
that no factor is an a

b -power. For a symbolic morphism parameterized by a and b, this word is
necessarily given in its run-length encoding, with symbolic block lengths in a and b. Therefore
we must be able to decide whether certain linear inequalities in a and b are true or false for a

b
restricted to a given interval. If an inequality is true for some a

b in the interval and false for
other a

b in the interval, we restart the test with the interval broken into two subintervals at the
point where equality holds.

4 Scope

The statements of Theorems 2–5, and many others that we have omitted here, were discovered by
computing prefixes of wa/b for 910 different rationals 1 < a

b < 2. We have identified morphism-
related structure in wa/b for 520 of these 910 rationals. Not all of these words are fixed points
of uniform morphisms, but they satisfy some recurrence

wa/b(ki + t) = wa/b(i) + d (1)

for all i ≥ 0, where there is a transient length t before the self-similar behavior, governed by a k-
uniform morphism, begins. The corresponding morphisms are a

b -power-free but not necessarily
lexicographically least. The following is one of the more complex examples we have found.



Theorem 8. Let a, b be relatively prime positive integers such that 9
7 < a

b < 4
3 and gcd(b, 24) = 1.

Then the (24a− 15b)-uniform morphism

ϕ(n) = 0a−b−1 1 02a−2b−1 1 0−a+2b−1 1 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1 04a−5b−1 1

0−a+2b−1 1 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1 0−2a+3b−1 1 05a−6b−1 1

0−2a+3b−1 1 04a−5b−1 1 0a−b−1 1 0−2a+3b−1 1 03a−3b−1 1 0−2a+3b−1 1

0a−b−1 1 0−3a+4b−1 1 05a−6b−1 1 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1

03a−3b−1 1 0−2a+3b−1 1 04a−5b−1 1 0a−b−1 1 0−2a+3b−1 1 02a−2b−1 2

0a−b−1 1 0−2a+3b−1 1 03a−3b−1 1 0−2a+3b−1 1 0a−b−1 1 0a−b−1 (n + 2)

locates words of length 5a− 4b and is a
b -power-free.

Words of the form ϕω(0) are k-regular when ϕ is k-uniform, and the words wa/b which aren’t
fixed points of morphisms but which satisfy Equation (1) are also k-regular, so a natural question
is the following.

Open question. For which 1 < a
b < 2 does there exist an integer k such that wa/b is k-regular?
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