
On the coinductive nature of centralizers

Charles Grellois∗

June 2014

Abstract

The centralizer of a language of finite words L, denoted C(L), is the biggest solution of
the language equation X ·L = L ·X. Conway conjectured that if L is regular its centralizer
should be as well; Kunc proved however that such a language may have a non-recursively
enumerable centralizer, by encoding a Minsky machine in its complementary. We show that
clockwise Turing machines can be used in the proof and then remark that centralizers may be
seen as greatest fixpoints of a function over a lattice of languages. Therefore centralizers are
of coinductive nature, a key property which contributes to explain Kunc’s result: they can
compute the whole graph of configurations of a Turing machine, of which we may exclude
some connected components. By removing every component containing an initial configura-
tion, we obtain a centralizer which represents the ”computations” of the complementary of
a recursively enumerable language.

I would like to thank Prof. Karhumäki for introducing me to this problem and advising me
during an internship in Turku in 2009.

1 Introduction

Given a finite word w, it is well-known (see e.g. [1] or [2]) that the commutation equation

x · w = w · x (1)

has for solution the set of powers of w. It is tempting to generalize (1) to languages of finite
words. Given such a language L, its centralizer, denoted C(L), is the biggest solution of the
language equation

X · L = L ·X (2)

Such a solution always exists (see Section 4), and we obtain easily that

L∗ ⊆ C(L) ⊆ Pref(L∗)

Conway formulated in [3] the problem of the regularity of the centralizer of a regular language.
It remained open for many years, and progress was only made on restricted versions, leading to
a series of results exposed in [4], until Kunc [5] gave a surprisingly negative result in 2005:

Theorem 1 (Kunc (2005) [5]). • There exists a regular, star-free language whose central-
izer is not recursively enumerable.

∗PPS & LIAFA, Université Paris Diderot



• There exists a finite language whose centralizer is not recursively enumerable.

In the sequel we expose some of the main ingredients of Kunc’s proof, then use them to propose
a similar, yet new proof of this result using clockwise Turing machines. We believe that they
make the proof easier than the original one relying on Minsky machines, since they only have
one possible type of transition, as detailed in Section 3. We then show that centralizers may be
obtained as the greatest fixpoints of an order-preserving function over the lattice of languages
of finite words, and therefore are of a coinductive nature. We finally explain how this helps
understanding Kunc’s result.

2 Elements of Kunc’s proof

A game-theoretic intuition. Before sketching Kunc’s proof, it is useful to recall the game-
theoretic interpretation of the equation (2), which is closely connected to the following result:

Proposition 1. Given u, v ∈ L, suppose that x · u = v · y. Then x ∈ C(L) ⇐⇒ y ∈ C(L).

Fix an alphabet A and a language L, and consider a two-player game on A∗. On a position
w, Adam chooses a word u ∈ A∗, and then a word w′ ∈ {w · u, u · w}. Eve has to answer by
choosing a word v ∈ L which is a prefix of w′; and v becomes the new position of the game.
Adam wins if Eve cannot answer at some point, meaning that the initial position (and all the
ones on the path to the last position, due to Proposition 1) correspond to words which do not
belong to C(L). If Eve can answer infinitely, then all the positions of the play are in C(L). This
game is obviously determined.

Minksy machines. Recall that a Minsky machine [6] is a machine with registers (or counters)
storing integers that one may increment, decrement or test if they are worth 0 or not. Minsky
machines with two counters or more are equivalent to Turing machines. In his proof, Kunc fixes
a Minsky machine with two counters and encodes the configuration in which the machine is in
state q, with the integer n on its first counter and m on its second as the word

an+1 b âm+1 d̂2q (3)

He designs a language L such that its centralizer contains, among other, words corresponding to
the configurations of the machine. The operations are simulated by commutation. For example,
if the machine in state q increments its first counter and goes to state q′, we have

an+1 b âm+1 d̂2q ∈ C(L)

⇐⇒ gq a
n+2 b âm+1 d̂q ∈ C(L)

⇐⇒ eq fq gq a
n+2 b âm+1 ∈ C(L)

⇐⇒ fq gq a
n+2 b âm+1 d̂q′ ∈ C(L)

⇐⇒ an+2 b âm+1 d̂2q′ ∈ C(L)

Kunc obtains this by enforcing that, if Adam catenates gq a to the left (notice that this incre-

ments the first counter), Eve has no choice but to remove d̂q on the right. Then if Adam plays

eq fq on the left, Eve has to remove d̂q again. L is constructed such that Adam can only add

d̂q′ to the right (or go back in the computation). Eve must then answer by removing eq only;
Adam plays the same move again, and Eve has to remove fq gq. Notice that this construction
allows to add a new letter on the left of the word.



Similar equivalences hold for relating configurations in a way which simulates every of the oper-
ations of the Minsky machine, and we refer to [5] for the ones corresponding to decrementation,
nullity test and incrementation of the second counter (obtained by symmetry). For our encoding
using clockwise Turing machines, it is useful to recall that in Kunc’s construction the following
holds:

an+1 b âm+1 d̂2q ∈ C(L)

⇐⇒ dq a
n+1 b âm+1 d̂q ∈ C(L)

⇐⇒ d2q a
n+1 b âm+1 ∈ C(L)

A last key feature of L is that it is designed to exclude from C(L) the words encoding the initial
configurations of the machine – but only them and, by previous considerations, all the reachable
configurations. As a consequence, in C(L) every word corresponding to the encoding of a final
configuration describes an unreachable configuration, and thus an element of the complementary
of the language of the machine. Since there exists Minsky machines whose complementary is
not recursively enumerable, Theorem 1 holds.

3 Clockwise Turing machines

An inconvenient of Kunc’s proof is that Minsky machines have several distinct kind of transitions,
and he has to give a specific encoding for every of these. We present in this Section an alternative
formalism due to Neary and Woods [7], which leads in our opinion to a more economical proof
since it only has one behaviour.

Informally, a clockwise Turing machine is a variant of Turing machine with only one tape, which
is circular, and whose tape head only moves in a clockwise direction.

Definition 1. A clockwise Turing machine is a tuple M = (Q, A, δ, qi, qf ), where

• Q is a finite set of states,

• A is a finite set of tape symbols,

• δ : Q×A → {A ∪A ·A} ×Q is the transition function,

• qi is the initial state,

• and qf is the final state.

Note that the tape is finite, but not limited since δ may output two symbols at once. In a
configuration whose state is q and in which the circular tape, starting from its head and reading
clockwise, contains the word u1 · · ·un, applying the transition δ(q, u1) = (v, q′) results in a new
configuration with state q′ and tape u2 · · ·un · v (note that v may consist of two letters). Neary
and Woods proved that

Proposition 2. Any Turing machine can be simulated by a clockwise Turing machine.

It is worth noticing that their encoding does not require an additional counter for simulating
the transitions where the tape head should move counter-clockwise. We may then adapt Kunc’s
construction, encoding a configuration where the current state is q and the circular tape, starting
from its head and reading it clockwise, contains the word u1 · · ·un, by the word

d2q,u1
u1 · · · un (4)



We can obtain, as previously, the following useful property:

d2q,u1
u1 · · · un ∈ C(L) ⇐⇒ u1 · · · un d̂2q,u1

∈ C(L)

The simulation of a transition δ(q, u1) = (v, q′) is performed by adapting Kunc’s ideas to
obtain:

u1 u2 · · · und̂2q,u1
∈ C(L)

⇐⇒ fq,u1 gq,u1 u1 u2 · · · un d̂q,u1 ∈ C(L)
⇐⇒ eq,u1 fq,u1 gq,u1 u1 u2 · · · un ∈ C(L)
⇐⇒ gq,u1 u1 u2 · · · un v ĝq′,v ∈ C(L)

⇐⇒ u2 · · · un v ĝq′,v f̂q′,v êq′,v ∈ C(L)

⇐⇒ dq′,v u2 · · · un v ĝq′,v f̂q′,v ∈ C(L)
⇐⇒ d2q′,v u2 · · · un v ∈ C(L)

To finish, we exclude any initial configuration from C(L) using Kunc’s techniques. This gives a
similar, yet shorter proof of Kunc’s theorem.

4 Centralizers as fixpoints

In the proofs of Theorem 1, the idea is to build a language whose centralizer represents the
configuration graph of the machine, and then to exclude every component connected to an initial
configuration. In this way one obtains a graph whose final configurations precisely represent the
complementary of the machine’s language. In this Section, we explain why these centralizers
can represent the whole configurations graph, and not only its computable parts, by unravelling
their coinductive nature.

Centralizer as fixpoints. Consider the set Fin(A) of languages of finite words over A. It is
a complete lattice ordered by inclusion, on which the map

φ : X 7→ (L−1X) · L (5)

is order-preserving. Indeed, if X ⊆ Y then L−1X ⊆ L−1 Y and thus φ(X) ⊆ φ(Y ). Recall the
following Theorem:

Theorem 2 (Knaster–Tarski). Let L be a complete lattice and f : L → L be an order-preserving
function. Then the set of fixed points of f in L is also a complete lattice.

This implies in particular that φ has a fixpoint. In the case of centralizers, it has in general
many fixpoints, since any solution to the commuting equation (2) corresponds to a fixpoint. The
centralizer of L is actually its greatest fixpoint, and can thus be defined as their supremum. This
corresponds to the well-known property that the centralizer of a language L may be described
as the union of all the languages commuting with L.

Recall that, in a complete lattice, one can compute the least fixpoint of an order-preserving
function f as

lfp(f) =
∨
i∈N

f i(⊥)

and dually its greatest fixpoint is



gfp(f) =
∧
i∈N

f i(>)

In Fin(A), ⊥ corresponds to ∅ and > to A∗. We thus see that these two dual fixpoints are
very different in nature: the first is built inductively, starting from the least possible input, and
iteratively computing a value. Machines are inductive: they start from a configuration, and
compute step by step the result of their computation.

The latter is coinductive: it is constructed starting from every possible input, and iterately
removing data. In the case of φ, this can be understood as computing the set of positions where
Eve wins, that is, the elements of C(L): starting from all the positions, we remove the ones where
Eve looses immediatly, then the ones on which she looses after a step, and so on for every finitely
reachable position. The result is thus the set of positions from which Eve can play forever.

Calculus is inductive, but centralizers are coinductive.

This explains why centralizers can compute the whole graph of configurations of a machine, and
obtain non-computable configurations, from the moment one gives them the ability to simulate
their transitions. From this perspective, we may summarize Kunc’s proof as follows:

1. Create a language L whose centralizer C(L) can simulate the transitions of a machine.

2. C(L) contains the encoding of all configurations of the machine, and a word describing a
configuration may be obtained by commuting from another such word if and only if the
configurations they describe belong to the same connected component of the configurations
graph of the machine.

3. Modify L so that the encoding of every initial configuration of the machine is excluded
from C(L). As a result, C(L) now only contains encodings of unreachable configurations,
and thus represents the complementary of the language.

4. Take an universal machine, and obtain the Theorem.

5 Conclusion and perspectives

In this paper we gave the main ingredients of Kunc’s proof of the existence of regular languages
whose centralizer is not recursively enumerable. We proposed an alternate encoding, which
allows to simplify a bit the proof, and emphasized on the fact that the coinductive nature of
centralizers is their key to the non-recursively enumerable world.

Note that Kunc’s original article [5] adapts the proof we sketched to finite languages. Using sim-
ilar techniques, our approach also gives a proof of the existence of a non-recursively enumerable
centralizer in the case of a finite language.

An advantage of this approach, which was the first reason for us to consider Turing machines
instead of Minsky ones, is that much more research on small universal Turing machines has been
carried on than on such Minsky machines, and it is thus more relevant to consider the former
in order to estimate the cardinality of a finite language with a non-recursively enumerable
centralizer – especially due to the fact that Kunc’s proof is for two counter machines, and does
not seem to adapt to three or more counters, while ”small” universal Minsky machines would
require eight. Using small universal Turing machines from [7], I could estimate at around 1022

words the size of a language with a non-recursively enumerable centralizer.



References

[1] Combinatorics on words. Encyclopedia of mathematics and its applications. Addison-Wesley,
Advanced Book Program, World Science Division, 1983.

[2] Christian Choffrut and Juhani Karhumäki. Combinatorics of words, 1997.

[3] J. H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.

[4] Juhani Karhumäki and Ion Petre. Two problems on commutation of languages, 2003.

[5] Michal Kunc. The power of commuting with finite sets of words. Theory Comput. Syst.,
40(4):521–551, 2007.

[6] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

[7] Turlough Neary and Damien Woods. Four small universal turing machines, 2009.


