
On alternating timed automata for MITL

Thomas Brihaye∗ Morgane Estiévenart† Gilles Geeraerts‡

June 2014

Abstract

Motivated by the MITL model-checking problem, we define a new semantics for one
clock alternating timed automata (OCATA). In this paper, we expose this new semantics
and show how it is used to build Büchi timed automata equivalent to OCATA emanating
from MITL formulas. As a byproduct of our work, we identified an easily complementable
class of OCATA with Büchi acceptance conditions.

1 Introduction

Automata-based model-checking [6, 15] is nowadays a prominent technique for establishing the
correctness of computer systems. In this framework, the system to analyse is modeled by means
of a Büchi automaton (BA) B and the property to prove is usually expressed using a linear tem-
poral logic (LTL) formula ϕ. Establishing correctness of the system amounts to showing that
the language L(B) of the system is included in the language of a BA Aϕ recognizing the language
JϕK of the formula. One of the most efficient techniques to perform LTL model-checking is to
first construct from the LTL formula ϕ an alternating Büchi automaton (ABA) recognizing JϕK
which is then turned to a BA accepting the same language. This translation is possible thanks
to the well-known subset construction due to Miyano and Hayashi [12].
While those techniques are now routinely used, the model of BA and the LTL logic are sometimes
not expressive enough because they can model the possible sequences of events (for instance, the
LTL formula �(p⇒ ♦q) says that every p-event should eventually be followed by a q-event), but
cannot express quantitative properties about the (real) time elapsing between successive events.
To overcome these weaknesses, Alur and Dill [1] have proposed the model of Büchi timed au-
tomata (BTA), that extends BA with a finite set of (real valued) clocks. A real-time extension
of LTL called Metric Temporal Logic (MTL) was proposed by Koymans [9]. Unfortunately, its
model-checking problem is undecidable so that some of MTL fragments were studied. In this
paper we focus on a decidable syntactic fragment of MTL, called Metric Interval Temporal Logic
(MITL), proposed by Henzinger et al. in [3]. With this logic, we can express real-time property
such as �(p ⇒ ♦[1,2]q), which means ‘all p-event must be followed by a q-event that occurs
between 1 and 2 time units later ’.
The techniques developed on BA and ABA to perform LTL model-checking rely on nice proper-
ties which cannot be generalized to the timed framework. For example, in general, BTA are not
determinizable [1] (the problem of the determinizability is even undecidable [7]) and not com-
plementable [1] ; the universality and hence the emptiness language problem are undecidable for
alternating Büchi timed automata (ABTA) [1].

∗Département de Mathématiques, Université de Mons (UMONS), Belgium.
†Département de Mathématiques, Université de Mons (UMONS), Belgium, this author has been supported by

a FRIA scholarship.
‡Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium.

In the case of an MTL formula ϕ, Ouaknine and Worrell [13] showed how to construct a one-clock
alternating timed automaton (OCATA) Aϕ recognizing the language JϕK of ϕ on finite words:
we extend this result to the scope of infinite words [5]. Unfortunately, in general, the translation
from OCATA to Büchi timed automata (BTA) is impossible. Indeed, a run of an alternating
timed automaton can be understood as several copies of the same automaton running in parallel
on the same word, but whose clock values are not always synchronized. So, the number of
different clock values tracked along a run cannot be bounded and hence, the Miyano Hayashi
construction [12] cannot be directly applied.
In this paper, we present a novel semantics for OCATA [4, 5], that we call the interval semantics,
where clock valuations are not punctual values but intervals with real endpoints. One of the
features of this semantics is that several clock values can be grouped into intervals, thanks to a
so-called (bounded) approximation function. This semantics enables us to bound the number of
clock copies used by OCATA using bounded approximation functions: the price to pay is that
in general the resulting language is only an under-approximation of the starting one.
Nevertheless, we identify a class of OCATA A for which there exist a family of bounded approx-
imations functions f such that Lωf (A) = Lω(A). It is the class of OCATA Aϕ, obtained from
MITL formulas ϕ. Using the Miyano Hayashi construction, we can then translate these OCATA
into BTA accepting the same language.
As a byproduct of our work, we identify the easily complementable class of tree-like OCATA
(TOCATA), a subclass of OCATA that exhibits some structure akin to a tree (in the same spirit
as the Weak and Very Weak Alternating Automata [10, 8]) and which subsumes the class of
OCATA Aϕ constructed as in [14], for every MTL formula ϕ.

2 Preliminaries

Basic notions. Let R, R+ and N denote the sets of real, non-negative real and natural numbers
respectively. We call interval a convex subset of R. We rely on the classical notation 〈a, b〉 for
intervals, where 〈 is (or [, 〉 is) or], a ∈ R and b ∈ R∪ {+∞}. For an interval I = 〈a, b〉, we let
inf(I) = a be the infimum of I, sup(I) = b be its supremum (a and b are called the endpoints of
I) and |I| = sup(I)− inf(I) be its length. We note I(R) the set of all intervals. We note I(R+)
(resp. I(N+∞)) the set of all intervals whose endpoints are in R+ (resp. in N ∪ {+∞}). Let
I ∈ I(R) and t ∈ R, we note I + t for {i+ t ∈ R | i ∈ I}.
Let Σ be a finite alphabet. An infinite word on a set S is an infinite sequence s = s1s2s3 . . .
of elements in S. An infinite time sequence τ̄ = τ1τ2τ3 . . . is an infinite word on R+ s.t. ∀i ∈
N, τi ≤ τi+1. An infinite timed word over Σ is a pair θ = (σ̄, τ̄) where σ̄ is an infinite word over
Σ, τ̄ an infinite time sequence. We also note θ as (σ1, τ1)(σ2, τ2)(σ3, τ3) We note TΣω the set
of all infinite timed words. A timed language is a (possibly infinite) set of infinite timed words.

Alternating timed automata. Let Γ(L) be a set of formulas of the form >, or ⊥, or γ1

∨ γ2 or γ1 ∧ γ2 or ` or x ./ c or x.γ, with c ∈ N, ./ ∈ {<,≤, >,≥}, ` ∈ L. We call x ./ c
a clock constraint. Then, a one-clock alternating timed automaton (OCATA) [14] is a tuple
A = (Σ, L, `0, F, δ) where Σ is a finite alphabet, L is a finite set of locations, `0 is the initial
location, F ⊆ L is a set of accepting locations, δ : L × Σ → Γ(L) is the transition function.
Intuitively, disjunctions in δ(`) model non-determinism, conjunctions model the creation of
several automaton copies running in parallel (that must all accept for the word to be accepted)
and x.γ means that the clock x is reset when taking the transition.

`� `♦

b a, b

b
x ∈ [1, 2]

a x := 0

Figure 1: OCATA Aϕ with ϕ = �(a⇒ ♦[1,2]b).

3 The intervals semantics for OCATA on infinite words

The standard semantics for OCATA [13, 11] is defined as an infinite transition system whose
configurations are finite sets of pairs (`, v), where ` is a location and v is the valuation of the
(unique) clock. Intuitively, each configuration thus represents the current state of all the copies
(of the unique clock) that run in parallel in the OCATA. In this section, we introduce a novel
semantics for OCATA, in which configurations are sets of states (`, I), where ` is a location of
the OCATA and I is an interval, instead of a single point in R+. Intuitively, a state (`, I) is an
abstraction of all the states (`, v) with v ∈ I, in the standard semantics. We further introduce
the notion of approximation function. Roughly speaking, an approximation function associates
with each configuration C (in the interval semantics), a set of configurations that approximates
C (in a sense that will be made precise later), and contains less states than C.

Formally, a state of an OCATA A = (Σ, L, `0, F, δ) is a pair (`, I) where ` ∈ L and I ∈ I(R+).
We note S = L × I(R+) the state space of A. When I = [v, v], we shorten (`, I) by (`, v). A
configuration of an OCATA A is a (possibly empty) finite set of states of A in which all intervals
associated with the same location are disjoint. In the rest of the paper, we sometimes see a
configuration C as a function from L to 2I(R+) s.t. for all ` ∈ L: C(`) = {I | (`, I) ∈ C}. We
note Config (A) the set of all configurations of A. The initial configuration of A is {(`0, 0)}. For
a configuration C and a delay t ∈ R+, we note C + t the configuration {(`, I + t) | (`, I) ∈ C}.
Let E be a finite set of intervals from I(R+). We let ‖E‖ = |{[a, a] ∈ E}|+2×|{I ∈ E | inf(I) 6=
sup(I)}| denote the number of individual clocks we need to encode all the information present
in E, using one clock to track singular intervals, and two clocks to retain inf(I) and sup(I)
respectively for non-singular intervals I. For a configuration C, we let ‖C‖ =

∑
`∈L ‖C(`)‖.

Interval semantics. Let M ∈ Config (A) be a configuration of an OCATA A, and I ∈ I(R+).
We define the satisfaction relation ”|=I” on Γ(L) as:

M |=I >
M |=I γ1 ∧ γ2 iff M |=I γ1 and M |=I γ2

M |=I γ1 ∨ γ2 iff M |=I γ1 or M |=I γ2

M |=I ` iff (`, I) ∈M
M |=I x ./ c iff ∀x ∈ I, x ./ c
M |=I x.γ iff M |=[0,0] γ

A configuration M is a minimal model of the formula γ ∈ Γ(L) wrt I ∈ I(R+) iff M |=I γ and
there is no M ′ (M s.t. M ′ |=I γ. Intuitively, for ` ∈ L, σ ∈ Σ and I ∈ I(R+), a minimal model
of δ(`, σ) wrt I represents a (minimal) configuration the automaton can reach from state (`, I)
by reading σ. Observe that the definition of M |=I x ./ c only allows to take a transition δ(`, σ)
from state (`, I) if all the values in I satisfy the clock constraint x ./ c of δ(`, σ). We denote
Succ((`, I), σ) = {M | M is a minimal model of δ(`, σ) wrt I}. We lift the definition of Succ to
configurations C as follows: Succ(C, σ) is the set of all configurations C ′ of the form ∪s∈CMs,
where for all s ∈ C: Ms ∈ Succ(s, σ). That is, each C ′ ∈ Succ(C, σ) is obtained by choosing one
minimal model Ms in Succ(s, σ) for each s ∈ C, and taking the union of all those Ms.

Example: Let us consider the OCATA of Fig. 1, and let us compute the minimal models
of δ(`♦, b) = `♦ ∨ (x ≥ 1 ∧ x ≤ 2) wrt to [1.5, 2]. A minimal model of `♦ wrt [1.5, 2] is
M1 = {(`♦, [1.5, 2])}. A minimal model of (x ≥ 1 ∧ x ≤ 2) is M2 = ∅ since all values in [1.5, 2]

π (`�,0)

(`�,0.1)

(`♦,0)

(`�,0.2)

(`♦,0)

(`♦,0.1)

(`�,1.9)

(`♦,0)

(`♦,1.7)

(`♦,1.8)

(`�,2)

(`♦,0.1)

(`�,3) . . .

π′ (`�,0)
(`�,0.1)

(`♦,0)

(`�,0.2)

(`♦,[0,0.1])

(`�,1.9)

(`♦,[0,1.8])

(`�,2)

(`♦,[0.1,1.9])

(`�,3)

(`♦,[2.1,2.9])

. . .

. . .

π′′ (`�,0)

(`�,0.1)

(`♦,0)

(`�,0.2)

(`♦,[0,0.1])

(`�,1.9)

(`♦,0)

(`♦,[1.7,1.8])

(`�,2)

(`♦,0.1)

(`�,3) . . .

Figure 2: Several OCATA run prefixes

satisfy (x ≥ 1 ∧ x ≤ 2). As M2 ⊆ M1, M2 is the unique minimal model of δ(`♦, b) wrt [1.5, 2]:
Succ((`♦, [1.5, 2]), b) = {M2}.

Approximation functions For an OCATA A, an approximation function is a function f :
Config (A) 7→ 2Config(A) s.t. for all configurations C, for all C ′ ∈ f(C), for all locations ` ∈ L:
(i) (i) ‖C ′(`)‖ ≤ ‖C(`)‖; (ii) for all I ∈ C(`), there exists J ∈ C ′(`) s.t. I ⊆ J ; and (iii) for all
J ∈ C ′(`), there are I1, I2 ∈ C(`) s.t. inf(J) = inf(I1) and sup(J) = sup(I2). We note APPA
the set of approximation functions for A. We lift all approximation functions f to sets C of
configurations in the usual way: f(C) = ∪C∈Cf(C). In the rest of the paper we will rely mainly
on approximation functions that enable to bound the number of clock copies in all configurations
along all runs of an OCATA A. Let k ∈ N, we say that f ∈ APPA is a k-bounded approximation
function iff for all C ∈ Config (A), for all C ′ ∈ f(C): ‖C ′‖ ≤ k.

f-Runs of OCATA We can now define formally the notion of run of an OCATA in the
interval semantics. This notion will be parametrised by an approximation function f , that
will be used to reduce the number of states present in all configurations along the run. Each
new configuration in the run is thus obtained in three steps: letting time elapse, performing
a discrete step, and applying the approximation function. Formally, let A be an OCATA of
state space S, f ∈ APPA be an approximation function and θ = (σ1, τ1)(σ2, τ2) . . . (σi, τi) . . .
be an infinite timed word. Let us note ti = τi − τi−1 for all i ≥ 1, assuming τ0 = 0. An
f -run of A on θ is an infinite sequence C0, C1, . . . , Ci, . . . of configurations s.t. C0 = {(`0, 0)}
and for all i ≥ 1: Ci ∈ f(Succ(Ci−1 + ti, σi)). Observe that for all pairs of configurations
C, C ′ s.t. C ′ ∈ f(Succ(C + t, σ)) for some f , t and σ, each s ∈ C can be associated with a
unique set dest(C,C ′, s) ⊆ C ′ containing all the ‘successors’ of s in C ′ and obtained as follows.
Let C ∈ Succ(C + t, σ) be s.t. C ′ ∈ f(C). Thus, by definition, C = ∪s∈CMs, where each
Ms ∈ Succ(s, σ) is the minimal model that has been chosen for s when computing Succ(C, σ).
Then, dest(C,C ′, s) = {(`′, J) ∈ C ′ | (`′, I) ∈Ms and I ⊆ J}. Remark that dest(C,C ′, s) is well-
defined because intervals are assumed to be disjoint in configurations. The function dest allows
to define a DAG representation of runs, as it is usual with alternating automata. We regard a
run π = C0, C1, . . . , Ci, . . . as a rooted DAG Gπ = (V,→), whose vertices V correspond to the
states of the OCATA (vertices at depth i correspond to Ci), and whose set of edges→ expresses
the OCATA transitions. Formally, V = ∪i≥0Vi, where for all i ≥ 0: Vi = {(s, i) | s ∈ Ci} is the
set of all vertices of depth i. The root of Gπ is ((`0, 0), 0) and (s1, i1)→ (s2, i2) iff i2 = i1 +1 and
s2 ∈ dest(Ci−1, Ci, s1). From now on, we will mainly use the DAG characterisation of f -runs.

Example: Fig. 2 displays three DAG representation of run prefixes of Aϕ (Fig. 1), on the word
(a, 0.1)(a, 0.2)(a, 1.9)(b, 2)(b, 3) . . . (grey boxes highlight the successive configurations). π only
is an Id-run and shows that the number of clock copies cannot be bounded in general: if Aϕ
reads n a’s between instants 0 and 1, n copies of the clock are created in location `♦.

f-language of OCATA We can now define the accepted language of an OCATA, parametrised
by an approximation function f . A branch of an f -run G is a (finite or) infinite path in Gπ.
We note Branω(G) the set of all infinite branches of Gπ and, for a branch β, we note Infty(β)
the set of locations occurring infinitely often along β. An f -run is accepting iff ∀β ∈ Branω(G),
Infty(β) ∩ F 6= ∅ (i.e. we consider Büchi acceptance condition). We say that an infinite timed
word θ is f -accepted by A iff there exists an accepting f -run of A on θ. We note Lωf (A) the
language of all infinite timed words f -accepted by A. We close the section by observing that a
standard semantics for OCATA (where clock valuations are punctual values instead of intervals)
is a particular case of the interval semantics, obtained by using the approximation function Id
s.t. Id(C) = {C} for all C. We denote by Lω(A) the language LωId(A). Then, the follow-
ing proposition shows the impact of approximation functions on the accepted language of the
OCATA: they can only lead to under-approximations of Lω(A).

Proposition 1. For all OCATA A, for all f ∈ APPA: Lωf (A) ⊆ Lω(A).

Idea. In Id-runs, all clock values are punctual, while in f -runs, clock values can be non-punctual
intervals. Consider a set (`, v1), . . . , (`, vn) of states in location ` and with punctual values
v1 ≤ . . . ≤ vn, and consider its approximation s = (`[v1, vn]). Then, if a σ-labeled transition is
firable from s, it is also firable from all (`, vi). The converse is not true: there might be a set of
σ-labeled transitions that are firable from each (`, vi), but no σ-labeled transition firable from
s, because all clock values in I must satisfy the transition guard.

4 TOCATA: an easily complementable class of OCATA

In this section, we introduce the class of tree-like OCATA (TOCATA for short) whose acceptance
condition can be made simpler than in the general case. This specific property enables to easily
complement the TOCATA.

Tree-like OCATA An OCATA A = (Σ, L, `0, F, δ) is a TOCATA iff there exists a partition
L1, L2, . . . , Lm of L and a partial order 4 on the sets L1, L2, . . . , Lm s.t.: (i) each Li contains
either only accepting states or no accepting states: ∀1 ≤ i ≤ m either Li ⊆ F or Li ∩ F = ∅;
and (ii) the partial order 4 is compatible with the transition relation and yields the ‘tree-like’
structure of the automaton in the following sense: 4 is s.t. Lj 4 Li iff ∃σ ∈ Σ, ` ∈ Li and
`′ ∈ Lj such that `′ is present in δ(`, σ).

Properties of TOCATA The first peculiar property of TOCATA is concerned with the
acceptance condition. In the general case, a run of an OCATA is accepting iff all its branches visit
accepting states infinitely often. Thanks to the partition of locations characterising TOCATA,
this condition can be made simpler: a run is now accepting iff each branch eventually visits
accepting states only, because it reaches a partition of the locations that are all accepting.

Proposition 2. An Id-run Gπ of a TOCATA A with set of accepting locations F is accepting
iff ∀β = β0β1 . . . βi . . . ∈ Branω(Gπ), ∃nβ ∈ N s.t. ∀i > nβ: βi = ((`, v), i) implies ` ∈ F .

The second property of interest is that TOCATA can be easily complemented swaping accepting
and non-accepting locations, and ‘dualising’ the transition relation (as in the case of OCATA on
finite words [14]). Formally, the dual of a formula ϕ ∈ Γ(L) is the formula ϕ defined inductively
as follows. ∀` ∈ L, ` = ` ; false = true and true = false ; ϕ1 ∨ ϕ2 = ϕ1∧ϕ2 ; ϕ1 ∧ ϕ2 = ϕ1∨ϕ2

; x.ϕ = x.ϕ ; the dual of a clock constraint is its negation (for example: x ≤ c = x > c). Then,
for all TOCATA A = (Σ, L, `0, F, δ), we let AC = (Σ, L, `0, L \ F, δ) where δ(`, σ) = δ(`, σ).
Thanks to Proposition 2, we can prove that AC accepts the complement of A’s language:

Proposition 3. For all TOCATA A, Lω(AC) = TΣω \ Lω(A).

5 Application: MITL model-checking

We present here our technique to perform MITL model-checking. To prove our approach is cor-
rect, we mainly rely on the interval semantics previously defined and the properties of TOCATA.

Metric Interval Temporal Logic. Given a finite alphabet Σ, the formulas of MITL are
defined by the following grammar, where σ ∈ Σ and I ∈ I(N+∞) is non-singular:

ϕ := > | σ | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1UIϕ2.

We adopt the following shortcuts: ♦Iϕ (”eventually ϕ in I”) stands for >UIϕ, �Iϕ (”always
ϕ on I”) for ¬♦I¬ϕ. Given an infinite timed word θ = (σ̄, τ̄) over Σ, a position i ∈ N0 and
an MITL formula ϕ, we write (θ, i) |= ϕ when θ satisfies ϕ from position i. This satisfaction
relation is defined in the usual way, let us only recall the semantics of the until operator ‘U ’:
(θ, i) |= ϕ1UIϕ2 iff ∃j ≥ i: (θ, i) |= ϕ2, τj − τi ∈ I ∧ ∀i ≤ k < j: (θ, k) |= ϕ1. We say that θ
satisfies ϕ, written θ |= ϕ, iff (θ, 1) |= ϕ. We note JϕK the timed language {θ | θ |= ϕ}.
When applying, to an MITL formula ϕ, the construction defined by Ouaknine and Worrell
[14] in the setting of MTL interpreted on finite words, one obtains a TOCATA Aϕ that ac-
cepts the infinite words language of φ (we rely on the specific properties of TOCATA given
by Propositions 2 and 3 to prove this result). For example, the OCATA Aϕ in Fig. 1 accepts
exactly

q
�(a⇒ ♦[1,2]b)

y
. Moreover, for every MITL formula ϕ, there exists an M(ϕ)-bounded

approximation function f?ϕ s.t. Lωf?ϕ(Aϕ) = JϕK.

To perform MITL model checking on a system BTA B and a formula ϕ, use would like to
have a BTA B¬ϕ recognizing J¬ϕK so that we could verify that L(B) ⊆ JϕK verifying that
L(B) × L(¬ϕ) = ∅. In general, it is not possible to turn OCATA into BTA [1] because of the
unbounded number of clock copies they use (see Example 1). But thanks to the bound M(¬ϕ)
on the number of clock copies and the approximation function f?¬ϕ it is now easy to build a
BTA B¬ϕ accepting J¬ϕK for every MITL formula ϕ, using a subset construction à la Miyano
Hayashi [12]. Equipped with these theoretical results, we elaborated an algorithm to solve the
model-checking problem of MITL. We define region-based and zone-based [2] versions of this
algorithm. They work on-the-fly in the sense that they work directly on the structure of the
OCATA A¬ϕ (whose size is linear in the size of ϕ), avoiding building B¬ϕ beforehand (which is,
in the worst case, exponential in the size of ϕ). We developed a prototype tool implementing
these algorithms.

6 Conclusion

In this paper, we considered the class of timed languages defined by MITL formulas. We proved
that the class of OCATA used by Ouaknine and Worrell [13] to represent these languages form a
first subclass of OCATA for which there exists a family of bounded approximation functions f?ϕ,
s.t., for every MITL formula ϕ, Lωf?ϕ(Aϕ) = Lω(Aϕ). We think that an interesting future work

would be to characterize the class of OCATA’s A for which there exist a bounded approximation
function f such that Lωf (A) = Lω(A). In another context, we hope the interval semantics could
help us to perform MITL synthesis on finite words.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
1994.

[2] P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas and J. Worrell. Universality Analysis for
One-Clock Timed Automata. Fundam. Inform., 89(4):419–450, 2008.

[3] R. Alur, T. Feder and T. A. Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116–146, 1996.

[4] T. Brihaye, M. Estiévenart and G. Geeraerts. On MITL and Alternating Timed Automata.
In FORMATS, volume 8053 of LNCS. Springer, 2013.

[5] T. Brihaye, M. Estiévenart and G. Geeraerts. On MITL and Alternating Timed Automata
over infinite words. Technical report, http://math.umons.ac.be/maef/full.pdf, 2014.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.

[7] O. Finkel. Undecidable problems about timed automata. In FORMATS, volume 4202 of
LNCS. Springer, 2006.

[8] P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In CAV, volume 2102
of LNCS. Springer, 2001.

[9] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems, 2(4):255–299, 1990.

[10] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Log., 2(3):408–429, 2001.

[11] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput. Log.,
9(2), 2008.

[12] S. Miyano and T. Hayashi. Alternating Finite Automata on omega-Words. Theor. Comput.
Sci., 32:321–330, 1984.

[13] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS’05.
IEEE, 188-197, 2005.

[14] J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal logic
over finite words. Logical Methods in Computer Science, 3(1), 2007.

[15] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifi-
cation (preliminary report). In LICS’86. IEEE, 1986.

