
Avoidability of long k-abelian repetitions

M. Rao∗, M. Rosenfeld†

June 23, 2014

Abstract

We study the avoidability of long k-abelian-squares (resp. cubes) on ternary (resp. bi-
nary) alphabet. We show that one cannot avoid abelian cubes of period at least 2 in infinite
binary words, answering negatively to one question from Mäkelä. Then we show that one can
avoid 3-abelian-squares of period at least 3 in infinite binary words and 2-abelian-squares of
period at least 2 in infinite ternary words.

1 Introduction

Avoidability of structures and patterns has been extensively studied in theoretical computer
science since the work of Thue on avoidability of repetitions in words [1]. Thue showed that
there are infinitely long ternary word without square (a factor of the form ww where w is a
word) and infinite binary word without cube (a factor of the form www where w is a word).

The avoidability of abelian repetitions has been studied since a question from Erdős in 1957
[6, 5]. A factor uv is an abelian square if u is a permutation of the letters of v. One cannot
avoid abelian squares on infinite ternary words. Erdős asked whether it is possible to avoid
abelian squares on an infinite word over an alphabet of size 4 [6, 5]. After some steps (alphabet
of size 25 by Evdokimov [7] and size 5 by Pleasant [11]) Keränen answered positively by giving a
morphism whose fixed-point is abelian square free. Moreover Dekking showed that it is possible
to avoid abelian cubes on a ternary alphabet and abelian 4th power on a binary alphabet [3].

Mäkelä asked the following two questions on the avoidability of long abelian cubes (resp. squares)
in a binary (resp. ternary) alphabet:

Question 1 (Mäkelä (see [10])). Can you avoid abelian cubes of the form uvw where |u| ≥ 2,
over two letters ? - You can do this at least for words of length 250.

Question 2 (Mäkelä (see [10])). Can you avoid abelian squares of the form uv where |u| ≥ 2
over three letters ? - Computer experiments show that you can avoid these patterns at least in
words of length 450.

The notion of k-abelian repetition has been introduced by Karhumäki et al. as a generalization
of both repetition and abelian repetition [9]. One can avoid 3-abelian-squares (resp. 2-abelian-
squares) on ternary (resp. binary) words [12]. Following Mäkelä questions, one can ask whether
it is possible to avoid long k-abelian-powers on binary (resp. ternary) words.

In Section 3, we answer negatively to Mäkelä’s Question 1. In Section 4, we show that one can
avoid 3-abelian-squares of period at least 3 in binary words and 2-abelian-squares of period at
least 2 in ternary words.
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2 Preliminaries

Let A be a finite alphabet. For a word u ∈ A∗ and a ∈ A, we denote by |u|a = |{i : u[i] = a}|
the number of occurrences of the letter a in u. For w ∈ A∗, we denote by |u|w = |{i : u[i :
i+ |w| − 1] = w}| the number of occurrences of the factor w in u.

Two word u and v are said to be abelian equivalent, denoted u ≈a v, if for every a ∈ Σ,
|u|a = |v|a. A word u1u2...up is an abelian-n-power if u1 ≈a u2 ≈a ... ≈a up. An abelian-square
(resp. abelian-cube) is an abelian 2-power (resp. abelian-3-power).

Two words u and v are said k-abelian equivalent (for k ≥ 1), denoted u ≈a,k v, if for every
w ∈ Σ∗ such that |w| ≤ k, |u|w = |v|w. A word u1u2...un is a k-abelian-n-power if u1 ≈a,k
u2 ≈a,k ... ≈a,k un. Its period is |u1|. Similarly, a k-abelian-square (resp. k-abelian cube) is
a k-abelian 2-power (resp. k-abelian 3-power). Note that the 1-abelian equivalence is exactly
the abelian equivalence. A word is said to be k-abelian-n-power-free if none of its factor is a
k-abelian-n-power.

The Parikh vector of a word w ∈ A∗ denoted Ψ(w) is the vector indexed by A such that for
every a ∈ A, Ψ(w)[a] = |w|a. Then two words u and v are abelian-equivalent if Ψ(u) = Ψ(v).
For a set S ⊂ A∗ and a word w ∈ A∗, ΨS(w) is the vector indexed by S such that for every
s ∈ S, ΨS(w)[s] = |w|s. We may write Ψk(w) instead of ΨBk(w) for w ∈ B∗.
For all u ∈ Σ∗, i ≤ |u|, let prefi(u) be the prefix of size i of u and sufi(u) be the suffix of size i
of u. There are equivalent definitions of k-abelian equivalence (see [9]). For every two words u
and v, the following conditions are equivalent:

• u and v are k-abelian equivalent (i.e. u ≈a,k v),

• Ψk(u) = Ψk(v) and prefk−1(u) = prefk−1(v),

• Ψk(u) = Ψk(v) and sufk−1(u) = sufk−1(v).

3 Abelian cubes and Mäkelä’s question

Dekking showed that it is possible to avoid abelian cubes in an infinite word over a ternary
alphabet [3]. More recently Rao showed that one can avoid 2-abelian-cubes on a binary alphabet
[12] and one can check that every word over a binary alphabet of length greater than 9 contains
an abelian cube. When wondering about the avoidability of long k-abelian-cubes on infinite
words, the only question left is the avoidability of long abelian-cubes on binary words. This is
subject of the Question 1 from Mäkelä. He asked whether one can avoid every abelian cubes of
period at least 2 in binary words. We answer negatively to this question.

For this, we used a property about Lyndon words that made the exhaustive search much faster.
A word w ∈ Σ∗ is a Lyndon word if for all u, v ∈ Σ+ such that w = uv, w <lex vu, where <lex is
the lexicographic order. The well known Chen-Fox-Lyndon Theorem states that every word may
be written uniquely as a concatenation of non-increasing Lyndon words. In the following proof
we refer to this decomposition as the Lyndon factorization. A language L ⊂ Σ∗ is a factorial if
for every w in L, every factor of w is in S.

Lemma 1. Any factorial language L with arbitrarily long words contains arbitrarily large power
or arbitrarily long Lyndon words.

Proof. Let assume that there is no arbitrarily long Lyndon words. This implies that there is
a finite number n of Lyndon word in L and s ∈ N such that for every Lyndon word w in L,



|w| ≤ s. Let w1, ..., wn ∈ Ln be the Lyndon words of L ordered by decreasing lexicographic
order.

Then using the Lyndon factorization they are for every w ∈ L some Lyndon words L1 ≥lex
L2 ≥lex ... ≥lex Ld such that w = L1...Ld. The fact that our language is factorial give us that all
the Li are in L. We get that for every w ∈ L there are α1, ..., αn ∈ N such that w = wα1

1 ...wαn
n .

Then |w| ≤ s×
∑

i αi ≤ s× t×maxi(αi).

If |w| ≥ n × s × t, at least one of the αi is greater than n and wni ∈ L. By assumption for any
n ∈ N there is a w ∈ L such that |w| ≥ n× s× t so we have arbitrarily long power in L.

A set of word that avoid certain kind of abelian repetitions is a factorial language and does
not contains arbitrarily large power. Thus we just need to check that there is no arbitrarily
long Lyndon word in it to deduce that this set does not contain arbitrarily long words. The
tree of the possible words to check in the exhaustive search is then shorter and it makes the
computation much faster. The next claim answers negatively to Mäkelä’s Question 1.

Claim 1. There is no infinite word over a binary alphabet avoiding abelian cubes of period at
least 2.

We checked using a computer program that there is only finitely many Lyndon words over a
binary alphabet avoiding abelian cubes of the form uvw such that |u| ≥ 2. The program took
approximately 3 hours to find all 2732711352 such Lyndon words. The longest word has length
290. Using Lemma 1 we deduced that there is no infinite binary word avoiding abelian cubes of
size greater or equal to two. Then we can ask:

Question 3. Is there p ∈ N such that one can avoid abelian cubes of period at least p over two
letters ?

For p = 3, we found a word of length 2500.

4 k-Abelian squares

A word is said (p, k)-abelian-square-free if it avoid k-abelian-squares of period at least p. A
morphism h is said (p,k)-abelian-square-free if for every abelian-square-free word w, h(w) is
(p, k)-abelian-square-free.

It is easy to verify that one cannot avoid squares of period at least 2 on a binary alphabet.
Entringer et al. showed that it is possible to construct a binary word with no square of period
at least 3 [4]. They also showed that every infinite binary word contains arbitrarily long abelian-
squares. Thus one can wonder about the avoidability of big k-abelian-squares. Rao asked the
following question:

Question 4 (Rao [12]). What is the smallest k (if any) such that arbitrarily long k-abelian-
squares can be avoided over a binary alphabet ?

In this section, we show that one can avoid long 3-abelian-squares over a binary alphabet, by
giving a (3, 3)-abelian-square-free morphism. Let h be the following morphism:

h :


0→ 00001010110
1→ 00111010110
2→ 00011111010
3→ 00011001010.

Theorem 1. The morphism h is (3,3)-abelian-square-free.



Proof. The proof is based on the same idea than the one used by Rao to give sufficient conditions
for a morphism to be k-abelian-free [12] which is a generalization of the sufficient conditions given
by Carpi for abelian-free-morphisms [2]. In the proof we use the following property:

Proposition 1. ∀k, i ∈ N, ∀u, v ∈ Σ∗ such that i < k, k − 1− i ≤ |u| and i ≤ |v| :

Ψk(uv) = Ψk(uprefi(v)) + Ψk(sufk−1−i(u)v). (S)

Let A = {0, 1, 2, 3} and w be an abelian-square-free word in A∗. Let show that h(w) is (3,3)-
abelian-square-free. We can check using a computer that ∀a, b ∈ A2, a 6= b, h(ab) is (3,3)-
abelian-square-free. So if there is a 3-abelian square it has to be on the image of 3 at least
letters. Then there are a1, a2, a3 ∈ A, x1, x2 ∈ A∗, u1, u2, v2, v3 ∈ {0, 1}∗ and v1, u3 ∈ {0, 1}+
such that:

• a1x1a2x2a3 is a factor of w.

• for every i ∈ {1, 2, 3}, uivi = h(ai)

• v1h(x1)u2 ≈a,3 v2h(x2)u3

|v1u2v2u3| ≥ 13 so |v1u2| ≥ 7 or |v2u3| ≥ 7. And |v1h(x1)u2| = |v2h(x2)u3| then ∀i ∈ {1, 2},
|vih(xi)ui+1| ≥ 7. Then ∀i ∈ {1, 2}, |vi| ≥ 3, |h(xi)| ≥ 3 or |ui+1| ≥ 3.

If |ui+1| ≥ 3 :

Ψ3(vih(xi)ui+1) = Ψ3(vi00) + Ψ3(h(xi)ui+1) (using (S) and pref2(h(xi)ui+1) = 00)

= Ψ3(vi00) + Ψ3(h(xi)00) + Ψ3(ui+1) (using (S) and pref2(ui+1) = 00)

= Ψ3(vi00) + Ψ3(h(xi)00) + Ψ3(01ui+1)−Ψ3(0100).

If |vi+1| ≥ 3 or |h(xi)| ≥ 3 we have the same result. So :

Ψ3(vih(xi)ui+1) = Ψ3(vi00) + Ψ3(h(xi)00) + Ψ3(01ui+1)−Ψ3(0100).

Let N be the matrix indexed by {0, 1}3 × {0, 1, 2, 3} with N [w, x] = |h(x)00|w. Then :

tN =


3 1 2 1 1 2 1 0
1 1 1 2 1 2 2 1
2 1 1 1 1 1 1 3
2 2 2 1 2 1 1 0

 .

Ψ3(vih(xi)ui+1) = Ψ3(vi00) +NΨ(xi) + Ψ3(01ui+1)−Ψ3(0100).

We supposed v1h(x1)u2 ≈a,3 v2h(x2)u3, so:

Ψ3(v100) +NΨ(x1) + Ψ3(01u2) = Ψ3(v200) +NΨ(x2) + Ψ3(01u3)

Let M be the sub-matrix of N made of its rows 1, 2, 6 and 7 (they correspond to the words
000, 001, 101, 110).

M =


3 1 2 2
1 1 1 2
2 2 1 1
1 2 1 1


Let ΨS(w) be the sub-vector of Ψ3(w) made of the rows 1,2,6 and 7. We can check that M is
non-singular. Then we can write:

M−1(ΨS(v100) + ΨS(01u2)−ΨS(v200)−ΨS(01u3)) = Ψ(x2)−Ψ(x1).



Let Ψ(v1, u2, v2, u3) = ΨS(v100) + ΨS(01u2)−ΨS(v200)−ΨS(01u3).

Ψ(v1, u2, v2, u3) is in Im(N) thusM−1(Ψ(v1, u2, v2, u3)) is an integer vector. Moreover, pref2(v100) =
pref2(v200), suf2(10u2) = suf2(10u3) and |v1u2| ≡ |v2u3| (mod 11).

Claim 2. For all a1, a2, a3 ∈ A and u1, v1, u2, v2, u3, v3 ∈ {0, 1}+ such that:

• ∀i ∈ {1, 2, 3}, uivi = h(ai),

• pref2(v100) = pref2(v200), suf2(10u2) = suf2(10u3) and |v1u2| ≡ |v2u3| (mod 11),

• Ψ(v1, u2, v2, u3) is in Im(N), M−1(Ψ(v1, u2, v2, u3)) is an integer vector

There are (α1, α2, α3) ∈ {0, 1} such that:

M−1(Ψ(v1, u2, v2, u3)) = α1Ψ(a1)− (2α2 − 1)Ψ(a2)− (1− α3)Ψ(a3)

Proof. This claim can be verified using a computer program. There are 43 values for the ai and
112 way of choosing the ui, vi for each of them which makes less than 7744 cases to check (most
of them being eliminated by the prefix and suffix conditions).

From the claim we have (α1, α2, α3) ∈ {0, 1} such that:

M−1(Ψ(v1, u2, v2, u3)) = α1Ψ(a1)− (2α2 − 1)Ψ(a2)− (1− α3)Ψ(a3{0, 1}).

Now we can introduce x′1, x
′
2 such that : ∀i ∈ {1, 2}, x′i = aαi

i xia
1−αi+1

i+1 . x′1x
′
2 is a factor of w

and

Ψ(x′1)−Ψ(x′2) = Ψ(x1)−Ψ(x2)− α1Ψ(a1) + (2α2 − 1)Ψ(a2) + (1− α3)Ψ(a3) = 0.

Then there is an abelian-square on w and we have a contradiction. This implies that h is
(3,3)-abelian-square-free.

Theorem 1 gives a partial answer to Rao’s Question 4. Moreover, since we know that there are
exponentially many square-free words of a given length on four letters, we can deduce that there
are exponentially many (3, 3)-abelian-square-free infinite words over a binary alphabet. We can
then ask the following question:

Question 5. Can you avoid 2-abelian-squares of period at least p for some p ∈ N ?

Computer experiments show that you can avoid those patterns for p = 3 in words of length
15000.

Minimal number of 3-abelian-squares in infinite binary words. Fraenkel and Simpson
showed that there is an infinite word containing only the squares 02, 12, (01)2 [8]. A natural
question is if we can extend this property to the 3-abelian case. Using a computer one can check
that there is no infinite word with only 3 non-equivalent 3-abelian-squares (the longest is of size
70). Let:

h2 :


0→ 00000101011
1→ 00001101011
2→ 000111
3→ 001010011.

Theorem 2. h2 is (3, 3)-abelian-square-free. Moreover for every abelian-square-free word w,
h(w) contains only 5 different 3-abelian-squares: 02, 12, (00)2 (01)2 and (10)2.



The proof is similar to the proof of the Theorem 1, and is omitted. One can ask the following
questions.

Question 6. Is there an infinite binary word that contains only 4 different 3-abelian-squares?

Question 7. Is there an infinite binary word w and k ∈ N such that w contains only 3 different
k-abelian-squares?

2-abelian squares over a ternary alphabet. Rao showed that one can build an infinite
word that avoid 3-abelian-squares over a ternary alphabet [12]. (The longest 2-abelian-square-
free ternary word has size 537 [9].) Mäkelä (Question 2) asked whether we can avoid abelian-
squares of period at least 2 in ternary words. We answer to a weaker version of this question,
that is one can avoid (2,2)-abelian squares over three letters. (The proof is similar to the proof
of the Theorem 1, and is omitted.) Let :

h3 :


0→ 00021
1→ 00111
2→ 01121
3→ 01221.

Theorem 3. h3 is (2, 2)-abelian-square-free.

5 Conclusion

(l,k)-abelian-squares on binary words
HH

HHHHk
l

1 2 3 ≥ 4

1
3 10 18 Finite

[4]

2
3 18 ≥ 15000 Quest. 5

Quest. 5

3
3 18 ∞ ∞

Th. 1

∞ 3 18 ∞ ∞
[4]

(l,k)-abelian-squares on ternary words
HH

HHHHk
l

1 2 ≥ 3

1
7 ≥ 4900 Quest. 2

Quest. 2

2
537 ∞ ∞
[9] Th. 3

3
∞ ∞ ∞
[12]

(l,k)-abelian-cubes on binary words
HHH

HHHk
l

1 2 ≥ 3

1
9 Finite Quest. 3

Claim 1

2
∞ ∞ ∞
[12]

Figure 1: The avoidability of long k-abelian-squares (resp. cubes) on ternary and binary words.

The three tables in Figure 1 recapitulate the results we know about the avoidability of big
k-abelian-n-power. The value in each case is the value of the longest word avoiding the corre-
sponding kind of repetition. ”∞” means that we can avoid them on arbitrarily long words, and
”Finite” means that we cannot but that we do not know the maximum length.
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[1] A.Thue. Über die gegenseitige lage gleicher teile gewisser zeichenreihen. Norske Vid. Selsk.
Skr. I. Mat. Nat. Kl. Christiania,, 10:1–67, 1912.



[2] A. Carpi. On abelian power-free morphisms. International Journal of Algebra and Compu-
tation, 03(02):151–167, 1993.

[3] F.M Dekking. Strongly non-repetitive sequences and progression-free sets. Journal of
Combinatorial Theory, Series A, 27(2):181 – 185, 1979.

[4] R.C Entringer, D.E Jackson, and J.A Schatz. On nonrepetitive sequences. Journal of
Combinatorial Theory, Series A, 16(2):159 – 164, 1974.
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