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Abstract

Abelian complexity of a word u is a function that counts the number of pairwise non-
abelian-equivalent factors of u of length n. We prove that for any c-balanced Parry word u,
the values of the abelian complexity function can be computed by a finite-state automaton.
The proof is based on the notion of relative Parikh vectors. The approach works generally
for any function F (n) that can be expressed in terms of the set of relative Parikh vectors
corresponding to the length n.

1 Introduction

Abelian complexity of a word u is a function ρabu : N → N that counts the number of pairwise
non-abelian-equivalent factors of u of length n [1]. Although the notion is simple, the evaluation
of ρabu (n) for a given infinite word u is usually a complicated task. One possible approach
to the problem consists in deriving an explicit formula for the abelian complexity function.
For example, one can show that every Sturmian word satisfies ρabu (n) = 2 for all n ∈ N [2].
Nevertheless, other nontrivial infinite words with an explicit formula or recurrent relations for
ρabu (n) are quite rare [1, 3, 4, 5, 6]. Moreover, achieved results are related only to words over
binary and ternary alphabets.

Another approach consists in calculating values ρabu (n) from definition. That is, one slides a
window of size n on a sufficiently long prefix of u and counts the classes of abelian-equivalent
factors. Despite this way is straightforward and universal, it is a brute-force method that can
be used in practice only for small values of n. The length of the prefix that must be sought
through is typically much greater than n, thus the calculation for large n becomes extremely
slow, and even when a powerful computer is used, it sooner or later fails for memory reasons.

We are going to deal with an approach that is, in a way, a combination of the previous two ones.
We show that for any c-balanced Parry word u, values ρabu (n) can be calculated by a finite-state
automaton with a normal U -representation of n as its input. In other words, instead of sliding a
window of size n on a certain prefix of u, which is inconvenient because the required prefix length
grows to infinity as n→∞, it gives one the possibility to perform a walk on a transition diagram
of a discrete finite-state automaton, which is a finite graph, independent of n. The result can
be iterpreted also in the way that there exist functions δ and τ allowing to evaluate ρabu (n) in
O(log n) steps. Our proof is constructive; we show how to derive the finite-state automaton in
question for a given word u, i.e., we explain how to find the functions δ and τ .
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2 Preliminaries

Let us consider an infinite word u over the alphabet A = {0, 1, . . . ,m − 1}. For every finite
factor w of u, we define the Parikh vector of w as the m-tuple Ψ(w) = (|w|0, |w|1, . . . , |w|m−1),
where |w|` for ` ∈ A denotes the number of occurences of the letter ` in w. If we denote the
length of w by |w|, it obviously holds |w|0 + |w|1 + · · ·+ |w|m−1 = |w|. Let us define

Pu(n) = {Ψ(w) ; w is a factor of u, |w| = n} .

The abelian complexity of a word u is the function ρabu : N→ N counting the elements of Pu(n),

ρabu (n) = #Pu(n) , (1)

where # denotes the cardinality.

The relative Parikh vector [7] is defined for any factor w of u of length n as

Ψrel
u (w) = Ψ(w)−Ψ(u0u1 · · ·un−1) , (2)

where u0u1 · · ·un−1 is the prefix of u of length n. Since the subtrahend Ψ(u0u1 · · ·un−1) on the
right-hand side of (2) does not depend on w, the set of relative Parikh vectors corresponding to
the length n,

Prel
u (n) :=

{
Ψrel

u (w) ; w is a factor of u, |w| = n
}
,

has the same cardinality as Pu(n). Hence we obtain, with regard to (1),

ρabu (n) = #Prel
u (n) . (3)

Parry words are infinite words associated with the set of β-integers for Parry numbers β. A
simple Parry word over the alphabet A = {0, 1, . . . ,m− 1} is a fixed point of a substitution

ϕ : 0 7→ 0α01
1 7→ 0α12

...
m− 2 7→ 0αm−2(m− 1)
m− 1 7→ 0αm−1

(4)

A non-simple Parry word over the alphabet A = {0, 1, . . . ,m+ p− 1} is a fixed point of

ϕ : 0 7→ 0α01
1 7→ 0α12

...
m+ p− 2 7→ 0αm+p−2(m+ p− 1)
m+ p− 1 7→ 0αm+p−1m

(5)

The exponents αj occurring in (4) and (5) are non-negative integers obeying certain restric-
tions [8, 9]. Both substitutions must satisfy α0 ≥ 1 and α` ≤ α0 for all ` ∈ A. In addition, (4)
requires αm−1 ≥ 1, whereas (5) requires α` ≥ 1 for a certain ` ∈ {m,m+ 1, . . . ,m+ p− 1}.
For a given substitution (4) or (5), let us set Uj = |ϕj(0)| for every j ∈ N0. Any n ∈ N can be

represented as a sum n =
∑k

j=0 djUj with dj ∈ N0. If coefficients dj are obtained by the greedy
algorithm, the sequence dkdk−1 · · · d1d0 is called normal U -representation of n [10] and denoted

〈n〉U = dkdk−1 · · · d1d0 .



The coefficients obtained by the greedy algorithm satisfy dj ∈ {0, 1, . . . , α0} for all j = 0, 1, . . . , k.

The incidence matrix Mϕ of a substitution ϕ on A = {0, 1, . . . ,m− 1} is defined by

Mϕ =

 |ϕ(0)|0 |ϕ(0)|1 · · · |ϕ(0)|m−1
...

...
...

|ϕ(m− 1)|0 |ϕ(m− 1)|1 · · · |ϕ(m− 1)|m−1

 .

It follows immediately from the definition of Mϕ that for any w ∈ A∗,

Ψ(ϕ(w)) = Ψ(w)Mϕ .

Furthermore, due to [11], if all the eigenvalues of Mϕ except the dominant one are of modulus
less than one, then the fixed point of ϕ is c-balanced for a certain c, i.e., for every ` ∈ A and for
every pair of factors v, w of u such that |v| = |w|, it holds ||v|` − |w|`| ≤ c.

A sequence (an)n∈N with values in a finite alphabet ∆ is called U -automatic (cf. [12]) if there
exists a deterministic finite automaton with output, (Q,Σ, δ, q0,∆, τ), with the input alphabet
Σ = {0, 1, . . . , α0}, a transition function δ, an initial state q0 and an output function τ such that

an = τ(δ(q0, 〈n〉U )) for all n ∈ N.

Here we assume that the domain of δ is extended to Q×Σ∗ by defining δ(q, ε) = q for all states
q ∈ Q and δ(q, xa) = δ(δ(q, x), a) for all q ∈ Q, x ∈ Σ∗ and a ∈ Σ, cf. [13].

3 Abelian complexity of c-balanced Parry words

From now on let u be a Parry word, i.e., the fixed point of a substitution (4) or (5). In
addition, we assume that u is c-balanced for a certain c > 0. We aim to prove that under these
assumptions, the sequence

(
ρabu (n)

)∞
n=1

is U -automatic.

3.1 The main idea

Our strategy consists in introducing certain finite sets S(n) for n ∈ N (their structure will be
described below) with the following properties.

(P1) For any n ∈ N, the set of relative Parikh vectors Prel
u (n) can be constructed from S(n).

(P2) There exists a finite number of sets S1,S2, . . . ,SM such that for any n ∈ N, S(n) = Sj for
a certain j ∈ {1, 2, . . . ,M}.

(P3) If the normal U -representation of a number N ∈ N satisfies 〈N〉U = 〈n〉Ud for certain
n ∈ N and d ∈ {0, 1, . . . , α0}, then the set S(N) can be constructed from S(n).

Property (P2) combined with property (P1) guarantees the existence of finitely many sets of
relative Parikh vectors, Prel

1 , . . . ,Prel
M , such that S(n) = Sj ⇒ Prel

u (n) = Prel
j . At the same time,

combining property (P2) with property (P3) allows us to define a function δ(j, d) such that(
S(n) = Sj ∧ 〈N〉U = 〈n〉Ud

)
⇒ S(N) = Sδ(j,d).

Once the sets Prel
1 , . . . ,Prel

M are established, one can introduce a function τ : {1, 2, . . . ,M} → N
defined as τ(j) = #Prel

j . Then the calculation of ρabu (n) for a given n ∈ N is carried out
as follows. In the first step, the function δ is used to tranform 〈n〉U into the value j such that
S(n) = Sj . Note that j can attain only values 1, . . . ,M , thus a machine with finitely many states
is sufficient to perform the procedure. In the second step, the function τ is used to transform
the value j into the value ρabu (n). It holds S(n) = Sj ⇒ Prel

u (n) = Pj ⇒ ρabu (n) = τ(j), cf.
equation (3).



3.2 Definition of S(n)

For any finite factor w of u, let hw be the sum of components of the vector Ψrel
u (w)Mϕ. Since

u is c-balanced by assumption, the set {Ψrel
u (w) ; w is a factor of u} is finite, hence the set

{|hw| ; w is a factor of u} is finite as well. We put H to be any (fixed) number satisfying the
inequality H ≥ max{|hw| ; w is a factor of u}. Furthermore, let L be any (fixed) number such
that the implication

|w| ≥ L ⇒ |ϕ(w)| − |w| ≥ 2α0 +H (6)

holds true for all factors w of u. The existence of L follows from the recurrence of u.

Definition 3.1. Let L be the number introduced by equation (6). For all n ∈ N, we define the
set

S(n) =
{(

Ψrel
u (ujuj+1 · · ·uj+n−1), uj , uj+n−L · · ·uj+n+L

)
; j ≥ L

}
. (7)

The set S(n) consists of triples (ψ, a, b−L · · · b0 · · · bL), where

• ψ = Ψrel
u (w) is the relative Parikh vector of a certain factor w of u of length n;

• a ∈ A is the first letter of w;

• b−L · · · bL is a factor of u of length 2L+ 1; its middle letter b0 coincides with the successor
of the last letter of w in u.

The relative positions of w, a and b−L · · · b0 · · · bL in u can be illustrated in the following way:

u = u0 · · ·uj−1
a︷︸︸︷
uj uj+1 · · ·

b−L···b−1︷ ︸︸ ︷
uj+n−L · · ·uj+n−1︸ ︷︷ ︸
w

b0︷︸︸︷
uj+n

b1···bL︷ ︸︸ ︷
uj+n+1 · · ·uj+n+L uj+n+L+1 · · · .

3.3 Property (P1)

Observation 3.2. For all n ∈ N, it holds

Prel
u (n) = {ψ ; (ψ, a, b−L · · · b0 · · · bL) ∈ S(n)} . (8)

Proof. The statement follows from equation (7) and from the fact that u is recurrent.

3.4 Property (P2)

Proposition 3.3. There exist sets S1,S2, . . . ,SM such that

(∀n ∈ N) (∃j ∈ {1, 2, . . . ,M}) (S(n) = Sj) .

Proof. The c-balancedness of u implies that the union
⋃∞
n=1 S(n) contains finitely many ele-

ments. Since S(n) for n ∈ N are subsets of
⋃∞
n=1 S(n), there is only a finite number of them.

3.5 Property (P3)

Proposition 3.4. There exists an algorithm transforming the set S(n) into the set S(N) for
any pair of integers n,N ∈ N such that 〈N〉U = 〈n〉Ud for a certain d ∈ {0, 1, . . . , α0}, i.e.,
〈n〉U = dk · · · d0, 〈N〉U = dk · · · d0d.

The algorithm consists in taking the elements (ψ, a, b−L · · · bL) ∈ S(n) one by one, and in
applying a formula that transforms (ψ, a, b−L · · · bL) into a certain set of triples (ψ̂, â, b̂−L · · · b̂L).
The union of all triples (ψ̂, â, b̂−L · · · b̂L) constructed in this way constitutes the set S(N).



3.6 U-automaticity

Proposition 3.5. There exists a function δ(j, d) for j ∈ {1, . . . ,M} and d ∈ {0, . . . , α0} such
that for any pair n,N ∈ N satisfying

〈n〉U = dkdk−1 · · · d1d0 and 〈N〉U = dkdk−1 · · · d1d0d

it holds
S(n) = Sj ⇒ S(N) = Sδ(j,d) . (9)

Proof. The statement is a straightforward corollary of Propositions 3.3 and 3.4.

We may assume without loss of generality that the sets Sj are enumerated so that Sd = S(d) for
all d = 1, . . . , α0. We also extend the definition of δ to the value j = 0 in the way δ(0, d) := d
for all d = 0, 1, . . . , α0. These two assumption make the implication (9) valid also for pairs n,N
such that n = 0 and N ∈ {1, . . . , α0}.

Proposition 3.6. Let n ∈ N. It holds S(n) = Sj for j = δ(0, 〈n〉U ).

Proof. The formula can be proven by induction on k. Recall that the symbol δ(0, dkdk−1 · · · d1d0)
has the meaning δ(δ(· · · δ(δ(0, dk), dk−1) · · · , d1), d0), cf. Section 2.

Let us define sets Prel
1 , . . . ,Prel

M as follows,

Prel
j = {ψ ; (ψ, a, b−L · · · bL) ∈ Sj} for all j = 1, . . . ,M .

Equation (8) with Proposition 3.6 lead to the formula

Prel
u (n) = Prel

δ(0,〈n〉U ) . (10)

Consequently, there exists a finite number of sets of relative Parikh vectors, Prel
1 , . . . ,Prel

M , such
that for any n ∈ N, Prel

u (n) is equal to Prel
j for a certain j ∈ {1, . . . ,M}.

Recall that the abelian complexity ρabu (n) is equal to the cardinality of the set Prel
u (n), cf.

equation (3). With regard to that, we introduce a function τ : {1, . . . ,M} → N by the relation

τ(j) = #Prel
j . (11)

Combining equations (3), (10) and the definition (11), we obtain the main result:

Theorem 3.7. The abelian complexity of u is given by the formula

ρabu (n) = τ (δ(0, 〈n〉U )) . (12)

Equation (12) implies that the sequence
(
ρabu (n)

)∞
n=1

is U -automatic.

Remark 3.8. The whole argument relies on the existence of sets S1, . . . ,SM with properties
referred to as (P1), (P2) and (P3). It can be shown that such sets S1, . . . ,SM can be found
explicitly by a quite simple algorithm.

Remark 3.9. For any n ∈ N, the set of relative Parikh vectors Prel
u (n) is equal to Prel

j , where the
value j is assigned to n by a finite automaton using the transition function δ, cf. equation (10).
Consequently, any function F : N → N that is defined in terms of the set of relative Parikh
vectors Prel

u (n) can be evaluated by a finite automaton using the transition function δ and an
appropriate output function τF . For example, the balance function [14, 15] of a word u is defined
as

Bu(n) = max{
∣∣ |w|a − |w′|a∣∣ ; a ∈ A, w, w′ are factors of u, |w| = |w′| = n} .



It is easy to show that the right hand side is equal to max{‖ψ − ψ′‖∞ ; ψ,ψ′ ∈ Prel
u (n)}.

Therefore, if we define the output function τB(j) := max
{
‖ψ − ψ′‖∞ ; ψ,ψ′ ∈ Prel

j

}
for all

j = 1, . . . ,M , we can write
Bu(n) = τB (δ(0, 〈n〉U )) .

Hence, the sequence (Bu(n))∞n=1 is U -automatic. A similar result can be obtained for any other
function expressible in terms of the set of relative Parikh vectors Prel

u (n).
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