
Subword complexity and decomposition of the set of factors to

sets of bounded complexity

Julien Cassaigne∗, Anna Frid†, Svetlana Puzynina‡, and Luca Q. Zamboni§

June 23, 2014

Abstract

In this abstract we explore a new hierarchy of classes of languages and infinite words and
its connection with complexity classes. Namely, we say that a language belongs to the class
Lk if it is a subset of the catenation of k languages S1 · · ·Sk, where the number of words
of length n in each of Si is bounded by a constant. The class of infinite words whose set
of factors is in Lk is denoted by Wk. In this paper we focus on the relations between the
classes Lk, Wk and the subword complexity of infinite words, which is as usual defined as
the number of factors of the word of length n. In particular, we prove that the class W2

coincides with the class of infinite words of linear complexity. The class Wk is included to
the class of words of complexity O(nk−1), but this inclusion is strict for k ≥ 3. For the class
Lk the inclusions do not hold at all.

The content of the abstract intersects with that of our previous paper [1], but here we
try to emphasize results not included to that paper. All the proofs included here are new;
the omitted proofs can be found in [1].

1 Classes and basic hierarchy

We consider finite and infinite words over a finite alphabet Σ, i.e., finite or infinite sequences
of elements from the set Σ. A factor or a subword of an infinite word is any sequence of its
consecutive letters. The factor ui · · ·uj of an infinite word u = u1 · · ·un · · · , with uk ∈ Σ, is
denoted by u[i..j]. As usual, the set of factors of a finite or infinite word u is denoted by Fac(u).

The number of factors of length n of a language L is denoted by pL(n) and is called the (subword)
complexity function of L. The complexity pu(n) of an infinite word u is defined as pFac(u)(n) [2].
Denote by P(α) the set of infinite words of complexity O(nα).

A factor s of a right infinite word u is called left special if as, bs ∈ Fac(u) for some distinct
letters a, b ∈ Σ. The length of a finite word s is denoted by |s|, and the number of occurrences
of a letter a in s is denoted by |s|a. The empty word is denoted ε and we define |ε| = 0. In the
paper we mostly follow the terminology and notation from [3].

Let us introduce the classes Lk of languages and Wk of infinite words as follows: a language L
(infinite word u) belongs to the class Lk (resp., Wk) if

L ⊆ S1 · · ·Sk
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(resp., Fac(u) ⊆ S1 · · ·Sk) for some languages Si with pSi(n) = O(1). In other words, u ∈ Wk if
and only if Fac(u) ∈ Lk, and the condition pSi(n) = O(1) means exactly that for some constant
C we have pSi(n) ≤ C for all n. We also have P(0) =W1.

2 The class W2 and linear complexity

By a simple cardinality argument, we have the following inclusion:

Lemma 1. For each integer k > 0, we have Wk+1 ⊆ P(k).

Example 1. Let us show that the Thue-Morse word t = 01101001 · · · , defined as the fixed
point starting with 0 of the morphism ϕ : 0 → 01, 1 → 10, belongs to W2. For each n the
Thue-Morse word consists of words tn = ϕn(0) and tn = ϕn(1), both of them of length 2n:
t = tntntntntntntntn · · · . Defining S1 to be the set of suffixes of all tn and tn, and S2 to be the
set of their prefixes, we see that S1 and S2 contain exactly two words of length k each. To cut
each factor w of t, we just choose any of its occurrences and a position m in it divided by the
maximal power n of 2: w = t[i..j] = t[i..m]t[m+ 1..j]. By the definition of m, t[i..m] is a suffix
of tn or tn, and t[m + 1..j] is a prefix of one of them, and thus, w ∈ S1S2. So, t ∈ W2. This
construction can be generalized to any fixed point of a primitive morphism but obviously not to
fixed points whose complexity is higher than linear (see [4] for examples).

Moreover, in fact, we can prove that all infinite words of linear complexity are in W2:

Theorem 1 ([1]). An infinite word is of linear complexity if and only if its language of factors
is a subset of the catenation of two languages of bounded complexity: W2 = P(1).

The proof of this theorem is based on the existence of a bounded number of markers of each
length. A subset M of factors of length n of a word u is said to be a set of D-markers if each
factor of length Dn of u contains an element of M . In fact, in a word u of linear complexity
there exist constants D and R such that we can always choose a set M of D-markers of a given
length of cardinality at most R. Indeed, we can choose M to be the set of left special factors
of this length [2], as we did in [1]. However, here we give another more direct and more general
construction:

Lemma 2. For each infinite word u which is not ultimately periodic and for each n we can find
a set M of 3-markers of length n in Fac(u) such that #M ≤ pu(4n)/n.

Proof. Let us construct the set M and the accociated set W of surrounding words of length
3n inductively as follows: starting from the empty sets M and W , we put the first marker
m1 = u[2n+1..3n] ∈M and the surrounding word w1 = u[n+1..4n] ∈W . So, m1 = w1[n+1..2n].

From now on suppose for each i that we have already added i − 1 elements to each of M and
W and consider the factors of u of length 3n. If each of them contains a factor from M , we are
done. If not, take a word of length 3n not containing any element of M as a factor, call it wi
and put to W . Define mi = wi[n+ 1..2n].

Clearly, since there is a finite number of factors of length 3n in u, the process is finite. It remains
to prove the upper bound pu(4n)/n to the number of elements of W and thus of M .

To do it, for each element wi of W , let us consider some its final occurrence which exists since
u is not ultimately periodic: wi = u[ki + 1..ki + 3n]. Now for each j = 0, . . . , n− 1 consider its
covering factor c(i, j) = u[ki + 1 + j − n..ki + 3n + j]. Clearly, the length of c(i, j) is 4n and
wi = c(i, j)[n− j + 1..4n− j]. Let us prove that if c(i, j) = c(i′, j′), then i = i′ and j = j′.



Indeed, suppose that c(i, j) = c(i′, j′) but i′ < i. Then wi = c(i, j)[n − j + 1..4n − j] and
thus mi = c(i, j)[2n − j + 1..3n − j]. Analogously, wi′ = c(i, j)[n − j′ + 1..4n − j′] and thus
mi′ = c(i, j)[2n− j′+ 1..3n− j′]. But since j, j′ ∈ {0, . . . , n− 1}, we have 2n− j′+ 1 ≥ n− j+ 1
and 3n− j′ ≤ 4n− j, and thus mi′ is a factor of wi contradicting to the construction of wi.

So, if c(i, j) = c(i′, j′), we have i = i′. Suppose that j′ < j; then wi = c(i, j)[n− j + 1..4n− j] =
c(i, j)[n− j′+ 1..4n− j′]. Consider the word s = c(i, j)[n− j+ 1..4n− j′]. It is (j− j′)-periodic,
and in particular, its prefix wi is (j − j′)-periodic. So, p(wi) ≤ j − j′ ≤ n, and since each letter
of s belongs either to the prefix occurrence of wi, or to the suffix occurrence of wi, or to both of
them, we see that s is also p(wi)-periodic. It immediately means that the prefix occurrence of
wi to s, wi = c(i, j)[n − j + 1..4n − j], is not a final occurrence of wi to u, contradicting to its
choice. So, j = j′.

We have proved that all the words c(i, j) are different. Their total number is #W#{j =
0, . . . , n − 1} = n#M . On the other hand, the length of each of them is 4n and thus their
number is majorated by pu(4n). So, n#M ≤ pu(4n) and #M ≤ pu(4n)/n, which was to be
proved. �

The rest of the proof of Theorem 1 is based on the following idea: we build the sets of markers
of length 2k for all k > 0 and for each factor of u, find the first occurrence of the longest marker
to it. Then we cut this marker in the middle to get u = st with s ∈ S and t ∈ T . So, we get
Fac(u) ⊆ ST ; the proof that the complexities of S and T are indeed bounded is omitted here
but given in [1].

We continue our attempts to generalize Theorem 1 to words of higher complexity and their
decompositions to two sets of lower complexity, but at the moment have no more results to
state. At the same time, several other generalizations clearly fail. The rest of the paper is
devoted to discussing them.

3 A language of sublinear complexity but not in Lk for any k

In the previous section, we considered the language of factors of an infinite word u and proved
that it is a subset of ST for two languages S and T of bounded complexity. The languages S
and T are in general not factorial, but the language Fac(u) is. In what follows we prove that we
cannot abandon the condition that the initial language is factorial: we construct a non-factorial
language L whose complexity is less than linear and which is not in Lk for any k

In order to construct our language L we first introduce a sequence of words xn on the alphabet
{0, 1, 2}:

xn = [n]22,

where [n]2 is the binary representation of n. For example, x5 = 1012 and x65 = 10000012;

clearly, |xn| = blog2 nc + 2 Define also yn = x

⌊
n
|xn|2

⌋
n : for example, y5 = ε since |x5| = 4 and

5/42 < 1, and y65 = x65 = 10000012 since |xn| = 8 and b65/82c = 1.

Then the desired language L is defined as follows:

L = {yn : n ∈ N}.

Let us prove that L /∈ Lk for any k. Suppose the opposite, i.e., that there exists a k such that
L ⊆ S1 · · ·Sk, and the complexity of each of Si is bounded. Denote S =

⋃k
i=1 Si. Clearly, the

complexity of S is also bounded.



Take some n0 such that |yn| ≥ k + 1 for all n > n0. We can always do it since due to the
definition of xn we have |xn| ∼ log n, and thus |yn| ∼ n/ log n.

Now, for any n > n0, there exists sn ∈ S such that 2xn ∈Fac(sn). Indeed, yn ∈ L contains at
least k + 1 occurrences of the letter 2, so at least one of the elements of the partition into k
elements from S contains two occurrences of 2 and hence has 2xn as a factor. Clearly, |sn| ≤ |yn|,
since sn is a factor of yn. Besides that, for any m 6= n, we have 2xm /∈Fac(sn). So, all the words
sn are distinct.

For any n1 > n0, consider Sn1 = {sn : n0 ≤ n ≤ n1} ⊂ S. This set consists of n1−n0+1 distinct

words. All these words are of length at most |yn2 | = |xn2 |
⌊

n2
|xn2 |2

⌋
∼ n2

logn2
, where n0 < n2 ≤ n1

and n2 is chosen to maximize the length. So, the maximal length of a word from Sn1 is o(n1−n0)
as n1 →∞. A contradiction with the fact that the complexity of S is bounded for each length.

It remains to prove that the complexity of L is bounded by a linear function. Indeed, consider
the numbers n such that 2k ≤ n < 2k+1; for all these n we have |xn| = k + 2 and |yn| =

(k+ 2)
⌊

n
(k+2)2

⌋
. In particular, within this interval, |yn| takes each value at most (k+ 2)2 times,

since the value of bn/pc changes each p units for a fixed p. Also, it is not difficult to check that
for sufficiently large n we cannot have |yn| = |yn′ | if |blog2 nc−blog2 n

′c| > 1. Indeed, consider n
and n′ such that blog2 nc = k, blog2 n

′c = k+2 and |yn′ | ≤ |yn|. Since within each interval of the
powers of 2 the length of yn is non-decreasing, we can assume that n′ = 2k+2 and n = 2k+1 − 1.
So, |yn′ | ≤ |yn| implies

(k + 4)

(
2k+2

(k + 4)2
− 1

)
≤ (k + 2)

2k+1

(k + 2)2
,

that is,

2k+1 k

(k + 2)(k + 4)
≤ k + 4− 1

k + 2
.

Clearly, it is only possible for small k, and if k = blog2 nc is sufficiently large, then |yn| < |yn′ |
for all n′ such that blog2 n

′c = k+2. Since the length of y2k is a non-decreasing function, as well
as the length of yn for a given k = blog2 nc, the same is true for all n′ such that blog2 n

′c ≥ k+2.

So, each given value m of the length |yn| can be reached in intervals corresponding to most two
consecutive values of blog2 nc, namely, k and k + 1. It means that it can be reached at most

(k + 2)2 + (k + 3)2 ∼ 2k2 times; here m ∼ 2k

k . The complexity of L is indeed sublinear. �

4 Examples of low-complexity words not in Wk, k ≥ 3

Lemma 1 and Theorem 1 imply that W2 = P(1), and in general Wk+1 ⊆ P(k) for all k. So, the
following natural question arises: is it true that Wk+1 = P(k) for all k?

The answer is negative.

Consider the word u = ababbabbb · · · =
∏∞
i=1 ab

k. Its complexity pu(n) = Θ(n2): this can be
either proved directly or derived from the famous paper by Pansiot [4], since u is obtained by
erasing the first letter c from the fixed point starting with c of the morphism c 7→ cab, a 7→
ab, b 7→ b.

Lemma 3 ([1]). The word u does not belong to W3.

On the other hand, it can be proved that the word u belongs toW6, so, it is natural to reformulate
our question as follows: Is it true that P(k) ⊆ Wf(k) for some function f? In other terms, does
there exist a function f(k) such that the language of factors of any word whose complexity is
O(nk) is a subset of a concatenation of f(k) sets of bounded complexity?



The answer is also negative and the counterexample is given by the following construction.

Define the infinite word w as follows: fix a growing integer function f(n) such that f(1) ≥ 1,
f(n) ≤ n and f(n)→∞, and consider the word

w =

∞∏
p=1

f(p)∏
q=1

(apbq)k(p,q),

where k(p, q) is a growing function: k(p, q) ≤ k(p, q + 1) and k(p, f(p)) ≤ k(p + 1, 1) for all p
and q.

The complexity of w is O(n2f(n)), and it does not belong to any class Wk, see [1] for the proof.

5 Open problems

Both counterexamples from the previous section are not recurrent: most factors occur in them
only once. We believe that recurrent and even uniformly recurrent examples can also be con-
structed, and we would appreciate nice constructions.

Also, it is not clear if the complexity of our examples is minimal possible. Can anything be said
about the words of complexity o(n2)? Is there an example of complexity O(n2) not belonging
to any Wk?

A generalisation of Theorem 1 to words of higher complexity and the concatenation of two sets
would also be appreciated. Of course if pu(n) grows faster than linearly, the cardinality of the
sets cannot be bounded, but how low can it be in general?
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