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Abstract

We investigate some properties of finite abelian groups defined by equivalence relations on
circular words. In particular, we show how the formalism of circular words gives rise naturally
to the notion of numeration systems for finite abelian groups. We also give some consequences
of our results, concerning the “gcd-property” of some linear recurrence sequences and a
generalization of Fermat’s little theorem.

Most numeration systems are intended to provide a codage of natural numbers and/or real
numbers [2]. Here, we wish to provide a codage of elements of some finite abelian groups. Our
basic structure is the notion of (dotted) circular words, introduced in the algebraic context in
[7]. A dotted circular word (or, simply, a circular word) of length ` is a finite word made of `
letters of a given alphabet A, indexed by Z/`Z instead of {0, . . . , ` − 1}. (Note that we must
have ` ≥ 1, i.e. the empty word ∅ does not give rise to a circular word ∅̃.) We write W̃ such
a circular word, to distinguish from the usual finite word W = w0 . . . w`−1. When the dotted
circular word is lengthy like ˜w0 . . . w`−1, we also write c̃w(w0 . . . w`−1) instead.

If the alphabet A is a group (in the sequel, we will consider only the case A = Z), then it
is possible to equip naturally the set Ã` of circular words of length ` with a binary operation
defined by the summation component by component, together with some equivalence relation ≈
that defines a “carry”. A toy example is given by A = Z embedded with the natural addition,
and the “carry” defined by the combinatorics of base-2 numeration system, that is: for any i,
we set

c̃w(w0 . . . wi−2wi−1wiwi+1 . . . w`−1) ≈ c̃w(w0 . . . wi−2(wi−1 − 2)(wi + 1)wi+1 . . . w`−1).

It is then easy to see that the quotient G` := Z̃`/ ≈ is isomorphic to the group Z/(2` − 1)Z. A
way to prove it consists in defining the function N on Z̃` by N(c̃w(w0 . . . w`−1)) :=

∑`−1
i=0 wi ·

2i mod (2` − 1), to show that two equivalent circular words have the same image under N , and
that the quotient function is an isomorphism of groups. A straightforward generalization gives
that base-b numeration systems for integer b together with circular words provide numeration
systems for groups of the form Z/(b` − 1)Z, that is: an ordered set of ` integers ni (here: 1, b,
b2, . . . , b`−1) such that the function N : Ã` −→ Z/(b` − 1)Z defined by N(c̃w(w0 . . . w`−1)) :=∑`−1

i=0 wini provides a one-to-one correspondence between the equivalence classes of Ã` and the
elements of Z/(b` − 1)Z. Since a real number is rational iff its b-expansion is periodic (with
b ∈ N, b> 1), what precedes can be used to construct the set Q of rational numbers (see [8]); it
can be regarded as a way to construct the set Qb of rational b-adic numbers as well.
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Our aim is to investigate some generalizations of these basic facts to other possible definitions
of the carry, extending previous results on the field that were limited to the Fibonacci numer-
ation system [7], [6] and quadratic cases of the form X2 = kX + 1 with k ∈ N∗ [5]. We will
emphasize on these cases as well as on the case of a very nice numeration system introduced by
Shigeki Akiyama et al. [1], namely the rational base number systems. Eventually, we provide
arithmetical consequences of the theory (natural generalizations of Fermat’s little theorem and
the property gcd(Fm, Fn) = Fgcd(m,n) for the Fibonacci sequence (Fn)n), and conclude by some
remarks about representatives of equivalence classes that can be recognized by some natural
language.

1 General algebraic structures on circular words

For a given alphabet A, we put Ã∗ := ∪`≥1Ã`, and write |W̃ | for the length of W̃ ∈ Ã∗. Let W̃ ′

be also in Ã∗. Then, W̃W̃ ′ = W̃W ′ stands for the circular word defined by the concatenation of
W and W ′. We also define W̃ 1 := W̃ and W̃n = W̃W̃n−1 for any n ≥ 2. The power equivalence
≈p on Ã∗ identifies W̃ with all of its powers.

Assume that a binary operation + is defined on A. For |W̃ | = |W̃ ′|, the sum of W̃ and W̃ ′ is

defined letter by letter. Since for any W̃ and W̃ ′ ∈ Ã∗ we have |W̃ |W ′|| = |W̃ ′
|W |
|, it is easy

to check that the previous addition extends to an addition on Ã∗/ ≈p, and that if (A,+) is a
group (resp. an abelian group, a monoid), then so is (Ã∗/ ≈p,+).

Let d ≥ 1 be fixed. We choose d + 1 elements of A, denoted by a0, . . . , ad, satisfying that
a0 6= 0 and ad 6= 0. It can be shown that it is of no inconvenience to assume gcd(a0, . . . , ad) = 1.
Define, for any ` ≥ 1 and any integer 0 ≤ i ≤ d, the circular word Ã`,i ∈ Ã` whose letters are
all equal to 0 but the one indexed by i mod `, equal to ai. We put Ã` :=

∑
0≤i≤d Ã`,i. We

set the carry equivalence relation ≈ between circular words of same length ` by: W̃ ≈ W̃ ′ iff
there exists integers v0, . . . , v`−1 such that W̃ = W̃ ′ +

∑
1≤i≤k viσ

−i(Ã`), where σ is the shift
transformation defined by σ(c̃w(w0 . . . w`−1)) := c̃w(w1 . . . w`−1w0). Again, it is easy to see that
if A is a group (resp. an abelian group, a monoid), then so is G` := Ã`/ ≈.

A `× `-circulant matrix is an array of elements mi,j of A, indexed by (Z/`Z)2 and such that, for
any i and j, mi+1,j+1 = mi,j . Any such matrix can be described by its first row, written on the
form of a dotted circular word Ã, the next rows being equal to σ−1(Ã), σ−2(Ã), . . . , σ−(`−1)(Ã).
For any Ã, we write C eA for the corresponding circulant matrix. Let ` ≥ 1 be given. With the
notation of the previous section, we have the following

Proposition 1. For A = Z, if the polynomial P (X) := adX
d + · · ·+ a1X + a0 does not admits

any `-th root of unity as a root, then c` := card(G`) = |det(CfA`
)|.

The assumption on P is made to ensure that CfA`
is invertible, a necessary and sufficient condition

to have that G` is finite.

Theorem 1. For A = Z, let E = (ei,j)i,j ∈ Md(Z) with e1,j = −aj/a0 for all j and ei+1,i = 1
for all 1 ≤ i < d. For any ` ≥ 1, we have

c` = a`0 · | det(E` − I)|.

The proof is a simple Gaussian reduction. Some more algebra gives then:



Proposition 2. Let Λ+ be the set of roots of P bigger than 1 in modulus (each of these roots
being written according to its order of multiplicity). We have

lim
`→+∞

(
c`+1

c`

)
= exp

(∫
U

log(|P (z)|)dz
)

=

∣∣∣∣∣∣a0

∏
λ∈Λ+

λ

∣∣∣∣∣∣ .
Proposition 2 implies that, for any choice of P , the sequence (c`)` is growing exponentially with
`. Nevertheless, it is worth mentioning that we may not have c`+1 > c` for all `. Indeed, for
P (X) = X3 −X2 −X − 1 (the Tribonacci numeration), the first terms of (c`)` are 2, 4, 2, 16,
22, 28, 86. . .

2 Numeration system on G` and structure of G`

From now, we work within the assumptions of Proposition 1, and assume gcd(a0, . . . , ad) = 1.
Let B̃` := c̃w(b0 . . . b`−1) be the circular word for which (1/c`) · CfB`

= (CfA`
)−1: by Proposition

1, we have B̃` ∈ Z̃`. The circular word B̃` defines our numeration system on G` by the way of
the function

N : G` −→ Z/c`Z
c̃w(w0 . . . w`−1)) 7−→

∑
0≤i<`

wibi (mod c`).

As recalled in introduction, in the classical case of base b numeration, we have bi = bi, and the
application N characterizes the equivalent classes of circular words by the property: W̃ ≈ W̃ ′

iff N(W̃ ) = N(W̃ ′). Here is what this result becomes in the general case:

Theorem 2. Assume ad or a0 be prime to c`. For any W̃ , W̃ ′ ∈ Ã`, we have

W̃ ≈ W̃ ′ ⇐⇒ N(σn(W̃ )) = N(σn(W̃ ′)) for any 0 ≤ n < d.

There are various cases in which the hypothesis gcd(ad, c`) = 1 (or gcd(a0, c`) = 1) is true for
any `. The simplest one is, of course, the one in which ad = 1 (or a0 = 1). Another case which
is worth mentioning is the case d = 1 with a0 and a1 mutually prime (we will deal with this case
more extensively in section 4).

Theorem 3. Assume ad or a0 be prime to c`. Let W̃ ∈ Ã` such that, for some integer m, we
have W̃ ≈ σm(W̃ ). Then, W̃ ∈ Ggcd(m,`) (i.e. we can find X̃ ∈ Ãd such that W̃ ≈ X̃`/d, where
d = gcd(m, `)).

Corollary 1. For any ` and `′ such that a0 and ad are prime to c` and c`′, we have G` ∩ G`′ =
Ggcd(`,`′).

All of this allows to describe in a complete manner the structure of the finite abelian groups
G`. For brievety, we only mention here one result simple to state: for ad or a0 prime to c`, G` is
monogenetic iff gcd(bi, c`) = 1 for some i.



3 Applications

3.1 The Tetris number

Definition 1. For any ` ≥ 1, let us call the `-th Tetris number of (ai)0≤i≤d the smallest positive
integer t such that t̃` ≈ 0̃`.

The name comes from the fact that we can consider the problem in the framework of the well-
known video game Tetris. Our “playing field” is of width ` (and is embedded within a toral
structure) and the famous rigid tetraminoes are replaced by a unique model of piece, which
cannot be rotated but whose d+ 1 columns can slide along each other. The i-th column of the
piece contains ai blocks (possibly of negative value), and the aim of the game is to let pieces fall
down the playing field until they constitutes a rectangle of width ` and height t.

Proposition 3. For any `, t` = c1 = |
∑

i ai|.

3.2 Fermat’s little theorem

Proposition 4. (“Fermat’s little Theorem”) For any prime number p, we have

cp ≡ |
∑
i

ai| (mod p).

The original Fermat’s little Theorem corresponds to the special case of numeration in base b
(i.e. d = 1, a0 = −b and a1 = 1), in which we have cp = bp− 1 and c1 = b− 1. Another example
of interest is the case of P (X) = aX − b with 0 < a < b and a and b mutually prime (see also
section 4), for which Proposition 4 writes bp − ap ≡ b − a (mod p). A third interesting case
is given by P (X) = X2 − X − 1. In this case, we have that, for any odd value of `, c` = L`,
where (L`)` is the Lucas sequence, defined by L1 = 1, L2 = 3 and L` = L`−1 + L`−2 for ` ≥ 3.
Therefore, Proposition 4 proves that, for any prime number p, we have Lp ≡ 1 (mod p).

3.3 The gcd property

More than a century ago, Édouard Lucas [4] (see also [3]) made the observation than, for the
Fibonacci sequence (Fn)n defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2, we have
what we could call the gcd-property: for any integers m and n, we have gcd(Fm, Fn) = Fgcd(m,n).
The following result can be regarded as a way to generalize this observation.

Theorem 4. For any ` and `′, cgcd(`,`′) = gcd(c`, c`′).

As an example, it is proved in [7] that, in the case P (X) = X2 − X − 1, we have c4` =
5F 2

2`. Therefore, Theorem 4 proves Lucas’s obervation for all even indices m and n. We will
not complete the proof here for other indices, but only mention that the value 5F 2

2`+1 is the
cardinality of the quotient G4(2`+1)/G2(2`+1).

4 The question of canonical representatives in some particular
cases

When applied to the elementary case of base b numeration system, Theorem 1 gives that c` =
b` − 1. This value is exactly equal to the cardinality of the set of circular words of length `



on the alphabet {0, 1, . . . , b − 1}, where the classical identification ˜(b− 1)` = 0̃` is made. In
[7] as well as in [5], where the cases P (X) = X2 − kX − 1 are investigated, the cardinality of
the groups G` is obtained by the natural generalization of admissible forms. The idea is there
to define a language L such that each equivalence class has a unique representative recognized
by L. Counting the nomber of circular words of length ` recognized by L therefore provided
the value of c`. For k ≥ 1, a suitable language is defined by the alphabet {0, 1, . . . , k} and the
condition wi = k =⇒ wi+1 = 0. The only exception occurs in the case ` = 2m, in which the
null class has exactly three representatives recognized by the language: c̃w(0`), c̃w((0k)m) and
c̃w((k0)m). (Note also that, in that case, the group G` is not monogenetic for all values of `. For
example, for k = 1, it is monogenetic iff ` is odd, otherwise it is generated by two elements.)

Another case which is worth mentioning is the Tribonacci case, defined by the polynomial
P (X) = X3 −X2 −X − 1. It provides an example in which what could appear as the natural
language to define canonical representation (the language on {0, 1} excluding factors of the form
111) is not convenient as it is for the case X2 − kX − 1. Indeed, not only the cardinality of
circular words of length ` recognized by this language is not equal to c`, but it is also sometimes
less than it. Indeed, a standard analysis shows that the number of such circular words is equal
to 2u`−4 + u`−3 + u`−1, where (un)n is the sequence defined by u0 = 1, u1 = 2, u2 = 4 and
un = un−1 + un−2 + un−3 for any n ≥ 3. Hence, we get that u` < c` for example for ` = 4, 5, 7,
10, 13, 16, 19,. . . We do not have a full explanation right now of this phenomenon, but it seems
probable that what precedes could be a useful step to understand it better.

Finally, let us consider in some details the case of a very interesting numeration system intro-
duced by Shigeki Akiyama et al. [1], here corresponding to the polynomial P (X) = aX− b with
0 < a < b.

Proposition 5. For P (X) = aX − b with 0 < a < b, any element of G` has a unique represen-
tative of the form c̃w(w0 . . . w`−1) such that all the wis belong to {0, 1, . . . , b− 1} and such that
at least one wi satisfies wi ≤ b− a.

Note that, in the classical case P (X) = X−10 of decimal numeration system, the latter condition
consists in forbidding the writing ˜99 . . . 99 for the neutral element ˜00 . . . 00.

In the case P (X) = aX − b, some complementary informations of an arithmetical nature can be
easily given. Without loss of generality, assume gcd(a, b) = 1. It is then easy to prove that, for
any q prime to both a and b, there exists ` such that q divides c` = b`−a` (consider k and k′ such
that ak ≡ 1 (mod q) and bk

′ ≡ 1 (mod q), then take ` = lcm(k, k′)). By Corollary 1, and since
all the G` are monogenetic (hence isomorphic to Z/c`Z), we get that the subgroup Pq made of
all elements of Ã∗ of order q is isomorphic to Z/qZ. This remark provides an alternative way of
expanding fractions in this numeration system, which is equivalent neither to the one provided by
the greedy algorithm nor to the one given by the modified Euclidean algorithm of [1]. Contrarily
to these expansions, we get here rational numbers for which, as in the usual base b numeration
system, the expansion is ultimately periodic. For example, in the case P (X) = 2X − 3, the
denominator q = 5 can be obtained with ` = 2 (since we have c2 = 32 − 22 = 5). The set G2 is
equal to {0̃0, 0̃1, 0̃2, 2̃0, 1̃0}, and the expresssions 0.01, 0.02, 0.20 and 0.10 are respectively equal
to 4/5, 8/5, 12/5 and 6/5. Nevertheless, not only the fractions with denominator q not prime
to a and b are excluded of the process (for any `, the value c` = b` − a` is prime to both b and
a, hence no G` has Z/aZ or Z/bZ as a subgroup), but also, for a given denominator q, not all
numerators p provide a fraction p/q for which a ultimately periodic expansion can be obtained.
To stay in the case P (X) = 2X − 3 and q = 5, it is easy to show that no ultimately periodic
expression (on the allowed language on the alphabet {0, 1, 2}), even with a periodic part in G2,
is equal to 1/5.
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