
Linear involutions, bifix codes and free groups
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Abstract

We investigate the natural codings of linear involutions. We show that they have essen-
tially the same combinatorial and algebraic properties as that of interval exchange trans-
formations. One has to modify the definition of return words and to replace the basis of a
subgroup by its symmetric version containing the inverses of its elements, called a monoidal
basis. With these modifications, the set of first return words to a given word is a monoidal
basis of the free group on the underlying alphabet A. Next, the set of first return words
to a subgroup of finite index G of the free group on A is a monoidal basis of G. We give
two different proofs of these results. The first one uses combinatorial arguments on labeled
graphs. The second one is based on the geometric representation of linear involutions as
Poincaré maps of measured foliations.

1 Introduction

A linear involution is an injective piecewise isometry of the interval. It allows to work with
nonorientable foliations on nonorientable surfaces. Linear involutions were introduced by Dan-
thony and Nogueira in [11, 12] as a natural generalization of interval exchange transformations.
The study of linear involutions was later developed by Boissy and Lanneau in [8].

We initiate here the study of natural codings of linear involutions, in the spirit of our previous
results on Sturmian sets [2] and on their generalizations as tree sets, introduced in [6]. A tree
set is a language defined by the condition that the extension graph of each word is a tree. This
graph describes the possible extensions of a word in the language on the left and on the right.
We have proved in [6] that in a uniformly recurrent tree set, the sets of first return words are
bases of the free group on the alphabet. Furthermore, we prove in [4] that if S is a uniformly
recurrent tree set, then a finite bifix code is S-maximal with degree d if and only if it is a basis
of a subgroup of index d. In particular, regular interval exchange sets are tree sets.

The natural codings of a linear involution are infinite words on an alphabet A whose letters and
their inverses index the intervals exchanged by the involution. These infinite words encode the
sequence of subintervals met by the orbits of the transformation.

We extend to natural codings of linear involutions most of the properties proved for uniformly
recurrent tree sets [4, 5, 6]. One has to modify the definition of return words and to replace
the basis of a subgroup by its symmetric version containing the inverses of its elements, called a
monoidal basis. These definitions are motivated by the geometric representation of involutions
as Poincaré maps of measured foliations.

We prove that if S is the natural coding of a linear involution without connection on the alphabet
A, the following holds.
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1. The set of first return words to a given word u ∈ S is a monoidal basis of the free group
on A (Theorem 5 or First Return Theorem).

2. A finite symmetric bifix code X is S-maximal if and only if it is a monoidal basis of a
subgroup of finite index of the free group (Theorem 9 or Finite Index Basis Theorem).

The results that are given here combine concepts and tools issued from symbolic dynamical sys-
tems, the theory of codes, the study of subgroups of free groups and the geometry of measured
foliations on surfaces. Indeed Theorem 5 and 10 can be proved with algebraic and combinatorial
tools, but also geometrically, with the main actors being measured foliations of surfaces intro-
duced by W. P. Thurston. They are defined on a compact surface X in which a finite number
of points Σ ⊂ X are removed. The free group is geometrically seen as the fundamental group
π1(X\Σ). Poincaré sections of these measured foliations are linear involutions. The return words
to a given word can be seen as different ways of choosing a section that captures the geometry
of the surface.

2 Linear involutions

Let A be an alphabet with k elements and let A−1 = {a−1 | a ∈ A} be a copy of A. The map
a 7→ a−1 is extended to an involution on A ∪A−1 by defining (a−1)−1 = a. The notation a−1 is
interpreted as an inverse in the free group on A.

We consider two copies I × {0} and I × {1} of an open interval I of the real line and denote
Î = I ×{0, 1}. We call the sets I ×{0} and I ×{1} the two components of Î. We consider each
component as an open interval.

A generalized permutation on A of type (ℓ,m), with ℓ+m = 2k, is a bijection π : {1, 2, . . . , 2k} →
A ∪A−1. We represent it by a two line array

π =

(

π(1) π(2) . . . π(ℓ)
π(ℓ+ 1) . . . π(ℓ+m)

)

A length data associated with (ℓ,m, π) is a positive vector λ ∈ R
A∪A−1

+ = R
2k
+ such that

λπ(1) + . . .+ λπ(ℓ) = λπ(ℓ+1) + . . . + λπ(2k) and λa = λa−1 for all a ∈ A.

We consider a partition of I × {0} (minus ℓ − 1 points) in ℓ open intervals Iπ(1), . . . , Iπ(ℓ) of
lengths λπ(1), . . . , λπ(ℓ) and a partition of I × {1} (minus m − 1 points) in m open intervals
Iπ(ℓ+1), . . . , Iπ(ℓ+m) of lengths λπ(ℓ+1), . . . , λπ(ℓ+m). Let Σ be the set of 2k − 2 division points

separating the intervals Ia for a ∈ A ∪A−1.

The linear involution on I relative to these data is the map T = σ2 ◦σ1 defined on the set Î \Σ,
formed of Î minus 2k − 2 points, and which is the composition of two involutions defined as
follows.

(i) The first involution σ1 is defined on Î \ Σ. It is such that for each a ∈ A ∪ A−1, its
restriction to Ia is either a translation or a symmetry from Ia onto Ia−1 . Thus, there are
real numbers αa such that for any (x, δ) ∈ Ia, one has σ1(x, δ) = (x + αa, γ) in the first
case and σ1(x, δ) = (−x+ αa, γ) in the second case (with γ ∈ {0, 1}).

(ii) The second involution exchanges the two components of Î. It is defined for (x, δ) ∈ Î by
σ2(x, δ) = (x, 1 − δ). The image of z by σ2 is called the mirror image of z.



Example 1 Let A = {a, b, c, d} and

π =

(

a b a−1 c

c−1 d−1 b−1 d

)

Let T be the 4-linear involution corresponding to the length data represented in Figure 1 (we
represent I × {0} above I × {1}) with the assumption that the restriction of σ1 to Ia and Id is
a symmetry while its restriction to Ib, Ic is a translation. We indicate on the figure the effect of

z

T (z)T 2(z)

a b a−1 c

c−1 d−1 b−1 d

Figure 1: A linear involution.

the transformation T on a point z located in the left part of the interval Ia. The point σ1(z) is
located in the right part of Ia−1 and the point T (z) = σ2σ1(z) is just below on the left of Ib−1 .
Next, the point σ1T (z) is located on the left part of Ib and the point T 2(z) just below.

Thus the notion of linear involution is an extension of the notion of interval exchange trans-
formation in the following sense. Assume that ℓ = k, that A = {π(1), . . . , π(k)} and that the
restriction of σ1 to each subinterval is a translation. Then the restriction of T to I × {0} is an
interval exchange (and so is its restriction to I ×{1} which is the inverse of the first one). Thus
in this case T is a pair of mutually inverse interval exchange transformations.

Two particular cases of linear involutions deserve attention. A linear involution T on the alpha-
bet A relative to a generalized permutation π of type (ℓ,m) is said to be nonorientable if there are
indices i, j ≤ ℓ such that π(i) = π(j)−1 (and thus indices i, j ≥ ℓ+ 1 such that π(i) = π(j)−1).
Otherwise T is said to be orientable. Linear involutions which are orientable correspond to
interval exchange transformations. They also correspond to orientable laminations.

A linear involution T = σ2 ◦ σ1 on I relative to the alphabet A is said to be coherent if for each
a ∈ A∪A−1, the restriction of σ1 to Ia is a translation if and only if Ia and Ia−1 belong to distinct
components of Î. Coherent linear involutions correspond to orientable surfaces. Thus coherent
nonorientable involutions correspond to nonorientable laminations on orientable surfaces. The
linear involution of Example 1 is coherent.

Let O =
⋃

n≥0 T
−n(Σ) and Ô = O ∪σ2(O) be respectively the negative orbit of the singular

points and its closure under mirror image.

A connection of a linear involution T is a triple (x, y, n) where x is a singularity of T−1, y is a
singularity of T and T nx = y. We call n the length of the connection.

We say that a transformation T defined on a topological space X is minimal if the nonnegative
orbit P (z) = ∪n≥0T

n(z) of any point z ∈ X is dense in X. In particular, a linear involution T

on I without connection is minimal if for any point z ∈ Î \ Ô the nonnegative orbit of z is dense
in Î. It is shown in [12] that noncoherent linear involutions are almost surely not minimal.

Let X ⊂ I×{0, 1}. The return time ρX to X is the function from I×{0, 1} to N∪{∞} defined
by

ρX(x) = inf{n ≥ 1;T n(x) ∈ X}.

Let T be a linear involution without connection on I. If T is nonorientable, it is minimal.
Otherwise, its restriction to each component of Î is minimal. Moreover, for each interval of
positive length included in Î , the return time to this interval takes a finite number of values. This
is proved in [8] (Proposition 4.2) for the class of coherent involutions. The proof uses Keane’s



theorem proving that an interval exchange transformation without connection is minimal [13].
The proof of Keane’s theorem also implies that for each interval of positive length, the return
time to this interval is bounded.

3 Natural coding

3.1 Words and free groups

We denote by FA the free group on A. We recall that, by Scheier’s Formula, any basis of a
subgroup of index d of a free group on k symbols has d(k − 1) + 1 elements.

A set of reduced words is said to be symmetric if it contains the inverses of its elements.

If X is a basis of a subgroup H of FA, the set X ∪ X−1 is called a monoidal basis of H. In
particular, A ∪ A−1 is a monoidal basis of FA. Note that a monoidal basis is not a basis of H
but that any w ∈ H can be written uniquely w = x1x2 · · · xn with xi ∈ X ∪X−1 and xixi+1 not
equivalent to 1 for 1 ≤ i ≤ n − 1. In this sense, X generates uniquely the subgroup H without
using inverses, justifying the term of ‘monoidal basis’. If Y is a monoidal basis of a subgroup of
index d in a free group on k symbols, then Card(Y ) = 2d(k − 1) + 2 by Schreier’s Formula.

A set of words is said to be factorial if it contains the factors of its elements. Let S be a factorial
set on an alphabet B (we have in mind the case B = A ∪A−1). For w ∈ S, we denote

L(w) = {a ∈ B | aw ∈ S}, R(w) = {a ∈ B | wa ∈ S}, E(w) = {(a, b) ∈ B ×B | awb ∈ S}

and further

ℓ(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)).

For w ∈ S, we denote
m(w) = e(w)− ℓ(w) − r(w) + 1.

According to [9] and [7, Chap. 4], the word w is called weak if m(w) < 0, neutral if m(w) = 0
and strong if m(w) > 0.

A symmetric factorial set of reduced words on the alphabet A∪A−1 is called a laminary set on
A (following [10] and [14]). Following again the terminology of [10], we say that a laminary set
S is orientable if there exist two factorial sets S+, S− such that S = S+∪S− with S+∩S− = {ε}
and for any x ∈ S, one has x ∈ S− if and only if x−1 ∈ S+.

3.2 Natural coding of linear involutions

Let T be linear involution on I. Given z ∈ Î \ Ô, the infinite natural coding of T relative to z

is the infinite word ΣT (z) = a0a1 . . . on the alphabet A ∪A−1 defined by

an = a if T n(z) ∈ Ia.

We denote by L(T ) the set of factors of the infinite natural codings of T . We say that L(T ) is
the natural coding of T .

We first observe that the infinite word ΣT (z) is reduced. Indeed, assume that an = a and
an+1 = a−1 with a ∈ A ∪ A−1. Set x = T n(z) and y = T (x) = T n+1(z). Then x ∈ Ia and
y ∈ Ia−1 . But y = σ2(u) with u = σ1(x). Since x ∈ Ia, we have u ∈ Ia−1 . This implies that
y = σ2(u) and u belong to the same component of Î, a contradiction.

The factor complexity of a factorial set S of words on an alphabet B is the sequence pn =
Card(S ∩Bn).



Proposition 2 The factor complexity of the natural coding of a k-linear involution without

connection is pn = 2n(k− 1) + 2 for n ≥ 1. Let T be a linear involution and let S = L(T ). If T

is orientable, then S is orientable. The converse is true if T has no connection.

3.3 Extension graphs

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w) as an undirected
graph on the set of vertices which is the disjoint union of L(w) and R(w) with edges the pairs
(a, b) ∈ E(w). This graph is called the extension graph of w.

We say that a biextendable set of words S is acyclic if for every word w ∈ S, the graph E(w) is
acyclic. We say that S is a tree set if E(w) is a tree for all w ∈ S. For more on tree sets, see [6].

Note that a word w such that E(w) is acyclic is weak and that it is neutral if E(w) is a tree.

One checks that the natural coding of any regular interval exchange set is a tree set. We
will prove the following extension to linear involutions. It relies on the simple fact that for a
linear involution T and for any word w of length n, the map T n is a translation or symmetry
from Iw to T n(Iw), where, for a nonempty word w = a0a1 · · · am−1 on A ∪ A−1, we define
Iw = Ia0 ∩ T−1(Ia1) ∩ . . . ∩ T−m+1(Iam−1

).

Theorem 3 The natural coding S of a linear involution without connection is acyclic. More-

over, E(ε) is a union of two disjoint isomorphic trees and for every nonempty word w ∈ S, the

graph E(w) is a tree.

3.4 The First Return Theorem

Let S be a laminary set. For w ∈ S, a complete return word to w in S is a word that contains
w or w−1 as a proper prefix and w or w−1 as a proper suffix. A complete return word to w is
simple if its only occurrences of w,w−1 are as a prefix or a suffix.

The following result is the counterpart for linear involutions of Theorem 3.6 in [6] where a similar
result is proved for uniformly recurrent tree sets (see also [1]).

Theorem 4 Let S be the natural coding of a linear involution without connection on the alphabet

A. For any w ∈ S, the set of simple complete return words to w has 2Card(A) elements.

To a complete return word u to w, we associate a word N(u) obtained as follows. If u has w

as prefix, we erase it and if u has a suffix w−1, we also erase it. Note that these two operations
can be made in any order since w and w−1 cannot overlap. The first return words to w are the
words N(u) associated with simple complete return words u to w.

The following result, which is the counterpart for linear involutions of Theorem 5.6 in [6] which
states that the set of first return words to a given word in a uniformly recurrent tree set on the
alphabet A is a basis of the free group on A. The proof relies on the fact that for n ≥ 2, the
Rauzy graph Gn−1 is obtained from Gn by Stalling foldings corresponding to left special words.

Theorem 5 (The First Return Theorem) Let S be the natural coding of a linear involution

without connection on the alphabet A. For any w ∈ S, the set of first return words to w is a

monoidal basis of FA.



4 Bifix codes

A prefix code is a set of nonempty words which does not contain any proper prefix of its elements.
A suffix code is defined symmetrically. A bifix code is a set which is both a prefix code and a
suffix code. For more on codes, see [3].

Let S be a set of words. A prefix (resp. bifix) code X ⊂ S is S-maximal if it is not properly
contained in any prefix (resp. bifix) code Y ⊂ S. A set of words S is recurrent if it is factorial
and for any u,w ∈ S, there is a v ∈ S such that uvw ∈ S. If S is recurrent, a finite S-maximal
bifix code is also an S-maximal prefix code (see [2], Theorem 2.2).

A parse of a word w with respect to a bifix code X is a triple (v, x, u) such that w = vxu where
v has no suffix in X, u has no prefix in X and x belongs the submonoid X∗ generated by X. By
definition, the S-degree of X, denoted dX(S) is the maximal number of parses of a word in S.
Thus, denoting dX(w) the number of parses of w, we have dX(S) = max{dX (w) | w ∈ S}. Note
that the degree of a word w is also equal to the number of suffixes of w which are not prefixes
of X.

Let S be a recurrent set of words and let X ⊂ S be a finite bifix code. By Theorem 4.2.8 in [2],
X is S-maximal if and only if its S-degree d is finite.

We consider symmetric bifix codes. One checks that for any symmetric recurrent set of words
S, an S-maximal bifix code X is symmetric if and only if X ∪X−1 is a bifix code.

Example 6 Let S be a laminary set and let X = S ∩ (A ∪ A−1)n be the bifix code formed of
the words of S of length n. It is an S-maximal bifix code of degree n.

The following result is a generalization of Theorem 3.6 in [4]. We will use it for natural codings
of linear involutions. We state it for an alphabet B with intention to use it with B = A ∪ A−1

(as we did with Theorem 4).

Theorem 7 (Cardinality Theorem) Let S be a recurrent set containing the alphabet B such

that any nonempty word is neutral. For any finite S-maximal bifix code X with d = dX(S), one
has Card(X) +m(ε)− 1 = d(Card(B) +m(ε)− 1).

Applying with B = A ∪A−1 and m(ε) = −1 by Theorem 3, we have the following corollary.

Corollary 8 Let S be the natural coding of a linear involution without connection on the alpha-

bet A. For any finite S-maximal bifix code, one has Card(X)− 2 = 2dX(S)(Card(A)− 1).

The following result is the counterpart for linear involutions of the finite index basis property
holding for interval exchange transformations and, more generally, for uniformly recurrent tree
sets (see [4]).

Theorem 9 (Finite index basis property) Let S be the natural coding of a linear involution

without connection and let X ⊂ S be a finite symmetric bifix code. Then X is an S-maximal

bifix code if and only if it is a monoidal basis of a subgroup of index dX(S).

Let G be a subgroup of the free group FA and let S be a laminary set on A. The set of first
return words to G in S is the set of nonempty words in G∩S without a proper nonempty prefix
in G ∩ S. The set of first return words to G in S is a symmetric S-maximal bifix code. The
following consequence of Theorem 9 is the counterpart for linear involutions of [5, Theorem 5.6].

Theorem 10 Let T be a linear involution on A without connection and let S = L(T ). For

any subgroup G of finite index of the free group FA, the set of first return words to G in S is a

monoidal basis of G.
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