On periodicity and complexity of generalized pseudostandard words

Josef Florian, and Lubomíra Balková†

June 2014

Abstract

Generalized pseudostandard words have been introduced by De Luca et al. in [6]. Recently, they have been studied intensively $[4,7]$, nevertheless in comparison to the palindromic and pseudopalindromic closure (studied for instance in $[1,3,5,6]$), only little is known about the generalized pseudopalindromic closure and the associated generalized pseudostandard words. We present two new results concerning these words. The first one is a necessary and sufficient condition for their periodicity. The second result is a counterexample to Conjecture 43 from [7] that estimated the complexity of binary generalized pseudostandard words as $\mathcal{C}(n) \leq 4 n$ for all sufficiently large n.

1 Basics from combinatorics on words

We restrict ourselves to the binary alphabet $\{0,1\}$. A (finite) word w over $\{0,1\}$ is any finite binary sequence. Its length $|w|$ is the number of letters it contains. The empty word - the neutral element for concatenation of words - is denoted ε and its length is set $|\varepsilon|=0$. An infinite word \mathbf{u} over $\{0,1\}$ is any binary infinite sequence. A finite word w is a factor of the infinite word $\mathbf{u}=u_{0} u_{1} u_{2} \ldots$ with $u_{i} \in\{0,1\}$ if there exists an index $i \geq 0$ such that $w=u_{i} u_{i+1} \ldots u_{i+|w|-1}$. The symbol $\mathcal{L}(\mathbf{u})$ is used for the set of factors of \mathbf{u} and is called the language of \mathbf{u}, similarly $\mathcal{L}_{n}(\mathbf{u})$ stands for the set of factors of \mathbf{u} of length n. A left special factor of a binary infinite word \mathbf{u} is any factor v such that both $0 v$ and $1 v$ are factors of \mathbf{u}. A right special factor is defined analogously. Finally, a factor of \mathbf{u} that is both right and left special is called a bispecial. We distinguish the following types of bispecials over $\{0,1\}$:

- A weak bispecial w satisfies that only $0 w 1$ and $1 w 0$, or only $1 w 0$ and $0 w 1$ are factors of \mathbf{u}.
- A strong bispecial w satisfies that all $0 w 0,0 w 1,1 w 0$ and $1 w 1$ are factors of \mathbf{u}.
- We do not use a special name for bispecials that are neither weak nor strong.

Let $w \in \mathcal{L}(\mathbf{u})$. A left extension of w is any word $a w \in \mathcal{L}(\mathbf{u})$, where $a \in\{0,1\}$, and a right extension is defined analogously. The set of left, resp. right extensions of w is denoted Lext (w), resp. $\operatorname{Rext}(w)$. The (factor) complexity of \mathbf{u} is the $\operatorname{map} \mathcal{C}_{\mathbf{u}}: \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
\mathcal{C}_{\mathbf{u}}(n)=\text { the number of factors of } \mathbf{u} \text { of length } n .
$$

[^0]An involutory antimorphism is a map $\vartheta:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for every $v, w \in\{0,1\}^{*}$ it holds $\vartheta(v w)=\vartheta(w) \vartheta(v)$ and moreover ϑ^{2} equals identity. It is clear that in order to define an antimorphism, it suffices to provide letter images. There are only two involutory antimorphisms over the alphabet $\{0,1\}$: the reversal (mirror) map R satisfying $R(0)=0, R(1)=1$, and the exchange antimorphism E given by $E(0)=1, E(1)=0$. We use the notation $\overline{0}=1$ and $\overline{1}=0$, $\bar{E}=R$ and $\bar{R}=E$. A finite word w is an R-palindrome if $w=R(w)$, and w is an E-palindrome if $w=E(w)$. The palindromic closure w^{R} of a word w is the shortest R-palindrome having w as prefix. Similarly, the pseudopalindromic closure w^{E} of w is the shortest E-palindrome having w as prefix.

2 Definition of generalized pseudostandard words

Generalized pseudostandard words form a generalization of infinite words obtained by the palindromic, resp. pseudopalindromic closure; such constructions were described and studied in $[1,3,5,6]$. Generalized pseudostandard words are given by two directive sequences in the following way: Let $\Delta=\delta_{1} \delta_{2} \ldots$, where $\delta_{i} \in\{0,1\}$, and $\Theta=\vartheta_{1} \vartheta_{2} \ldots$, where $\vartheta_{i} \in\{E, R\}$, be two directive sequences. The prefixes w_{n} of the infinite word $\mathbf{u}=\mathbf{u}(\Delta, \Theta)$ are obtained from the recurrence relation:

$$
\begin{gathered}
w_{n+1}=\left(w_{n} \delta_{n}\right)^{\vartheta_{n}}, \\
w_{0}=\varepsilon .
\end{gathered}
$$

The sequence (Δ, Θ) is called the bidirective sequence of the generalized pseudostandard word $\mathbf{u}(\Delta, \Theta)$. The sequence of prefixes w_{n} does not have to contain all R - and E-palindromic prefixes. However, if it is the case, we say that the bidirective sequence is normalized. In [7], the authors provide an algorithm for normalization of any bidirective sequence in such a way that the obtained generalized pseudostandard word remains unchanged.

Theorem 1. Let $\Lambda \widetilde{\widetilde{\wedge}}=(\Delta, \Theta)$ be a bidirective sequence. Then there exists a normalized bidirective sequence $\widetilde{\Lambda}=(\widetilde{\Delta}, \widetilde{\Theta})$ such that $\mathbf{u}(\Delta, \Theta)=\mathbf{u}(\widetilde{\Delta}, \widetilde{\Theta})$.
Moreover, in order to normalize the sequence Λ, it suffices firstly to execute the following changes of its prefix (if it is of the corresponding form):

- $(a \bar{a}, R R) \rightarrow(a \bar{a} a, R E R)$,
- $\left(a^{i}, R^{i-1} E\right) \rightarrow\left(a^{i} \bar{a}, R^{i} E\right)$ for $i \geq 1$,
- $\left(a^{i} \bar{a} \bar{a}, R^{i} E E\right) \rightarrow\left(a^{i} \bar{a} \bar{a} a, R^{i} E R E\right)$ for $i \geq 1$,
and secondly to replace step by step from left to right every factor of the form:
- $(a b \bar{b}, \vartheta \overline{\vartheta \vartheta}) \rightarrow(a b \bar{b} b, \vartheta \bar{\vartheta} \vartheta \bar{\vartheta})$,
where $a, b \in\{0,1\}$ and $\vartheta \in\{E, R\}$.

3 Periodicity of generalized pseudostandard words

We have prepared everything to introduce the first result - a sufficient and necessary condition for periodicity of generalized pseudostandard words. Let us underline that such words cannot be eventually periodic since they are recurrent by construction.

Theorem 2. Let $\Lambda=(\Delta, \Theta)$ be a bidirective sequence. The generalized pseudostadard word $\mathbf{u}(\Delta, \Theta)$ is periodic if and only if the following condition is satisfied:

$$
\begin{equation*}
(\exists a \in\{0,1\})(\exists \vartheta \in\{E, R\})\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n>n_{0}\right)\left(\delta_{n+1}=a \Leftrightarrow \vartheta_{n}=\vartheta\right) \tag{1}
\end{equation*}
$$

where $\Delta=\delta_{1} \delta_{2} \ldots$ and $\Theta=\vartheta_{1} \vartheta_{2} \ldots$
We will not provide the proof here, however let us list two normalization properties that play an important role in the proof (and that can be easily verified by the reader):

1. Let Λ be a normalized bidirective sequence satisfying the condition (1), then this sequence is eventually periodic.
2. Moreover, if the bidirective sequence Λ satisfies (1), then the sequence $\widetilde{\Lambda}$ obtained by its normalization satisfies (1), too.

Example 1. Let us show an example of a periodic generalized pseudostandard word. Assume $\Lambda=\left((011)^{\omega},(E E R)^{\omega}\right)$, where ω denotes an infinite repetition. The condition (1) is met since E is always followed by 1 and R by 0 . The bidirective sequence Λ is not normalized. For instance, the R-palindromic prefix 0110 is not equal to any prefix w_{n} :

$$
\begin{aligned}
& w_{1}=01 \\
& w_{2}=011001 \\
& w_{3}=01100110 .
\end{aligned}
$$

The sequence Λ can be normalized using Theorem 1: $\widetilde{\Lambda}=\left(01(10)^{\omega},(R E)^{\omega}\right)$. Let us write down again the first prefixes $\widetilde{w_{n}}$:

$$
\begin{aligned}
\widetilde{w_{1}} & =0 \\
\widetilde{w_{2}} & =01 \\
\widetilde{w_{3}} & =0110 \\
\widetilde{w_{4}} & =011001 \\
\widetilde{w_{5}} & =01100110 .
\end{aligned}
$$

It can be easily verified by the reader that $\widetilde{\Lambda}$ satisfies the condition (1), too, and $\mathbf{u}\left((011)^{\omega},(E E R)^{\omega}\right)=$ $\mathbf{u}\left(01(10)^{\omega},(R E)^{\omega}\right)=(0110)^{\omega}$.

4 Conjecture $4 n$

The second result is a counterexample to Conjecture $4 n$ (Conjecture 43 stated in [7]):
Conjecture 1. For every binary generalized pseudostandard word \mathbf{u} there exists $n_{0} \in \mathbb{N}$ such that $\mathcal{C}_{\mathbf{u}}(n) \leq 4 n$ for all $n>n_{0}$.

We have found a counterexample $\mathbf{u}_{p}=\mathbf{u}\left(1^{\omega},(E E R R)^{\omega}\right)$ that verifies $\mathcal{C}_{\mathbf{u}_{p}}(n)>4 n$ for all $n>10$. Let us write down its first prefixes w_{n} :

```
w
w
w3}=1010
w4}=101011010
w5}=101011010110010100101
w6}=1010110101100101001010110101100101001010
```

Again, we will not prove here that \mathbf{u}_{p} is indeed a counterexample to Conjecture $4 n$. We will instead mention the basic steps of the proof.
In order to get the complexity of \mathbf{u}_{p}, we used the well-known formula for the second difference of complexity [2].

$$
\Delta^{2} \mathcal{C}_{\mathbf{u}}(n)=\Delta \mathcal{C}_{\mathbf{u}}(n+1)-\Delta \mathcal{C}_{\mathbf{u}}(n)=\sum_{w \in \mathcal{\mathcal { L } _ { n }}(\mathbf{u})} B(w)
$$

where

$$
B(w)=\#\{a w b \mid a, b \in\{0,1\}, a w b \in \mathcal{L}(\mathbf{u})\}-\# \operatorname{Rext}(w)-\# \operatorname{Lext}(w)+1 .
$$

It is readily seen that for any factor of a binary infinite word \mathbf{u} it holds:

- $B(w)=1$ if and only if w is a strong bispecial.
- $B(w)=-1$ if and only if w is a weak bispecial.
- $B(w)=0$ otherwise.

We managed to find all weak bispecial factors and enough strong bispecial factors so that it provided us with a lower bound on the second difference of complexity that lead to the strict lower bound equal to $4 n$ on the complexity of \mathbf{u}_{p}.
We do not have enough observations to state a new conjecture, nevertheless in our computer experiments, we have on one hand several examples - including the word $\mathbf{u}_{p}-$ where lim sup $\frac{\mathcal{C}(n)}{n}$ seems to be greater than 4 . On the other hand, in all our examples $\lim \sup \frac{\mathcal{C}(n)}{n}$ is likely less or equal to 5 .

References

[1] M. Bucci, A. de Luca, A. De Luca, L. Zamboni, On Some Problems Related to Palindrome Closure, RAIRO - Theoretical Informatics and Applications 42 (2008), 679700
[2] J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 67-88
[3] X. Droubay, J. Justin, G. Pirillo, Episturmian Words and Some Constructions of de Luca and Rauzy, Theoretical Computer Science 255 (2001), 539-553
[4] D. Jamet, G. Paquin, G. Richomme, L. Vuillon, On the Fixed Points of the Iterated Pseudopalindromic Closure, Theoretical Computer Science 412 (2011), 2974-2987
[5] A. de Luca, Sturmian Words: Structure, Combinatorics, and their Arithmetics, Theoretical Computer Science 183 (1997), 45-82
[6] A. de Luca, A. De Luca, Pseudopalindromic Closure Operators in Free Monoids, Theoretical Computer Science 362 (2006), 282-300
[7] A. B. Massé, G. Paquin, H. Tremblay, L. Vuillon, On Generalized Pseudostandard Words over Binary Alphabet, Journal of Int. Sequences 16 (2013), Article 13.2.11
[8] W. A. Stein et al., Sage Mathematics Software, The Sage Developement Team (2010), www.sagemath.org

[^0]: * corresponding author, Czech Technical University in Prague, funded by the grant SGS14/205/OHK4/3T/14
 ${ }^{\dagger}$ Czech Technical University in Prague, funded by Czech Science Foundation grant GAČR 13-03538S

