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Abstract. Let P (x) ∈ Z[x] be an integer-valued polynomial taking only positive values
and let d be any fixed positive integer. The aim of this short note is to show, by elementary
means, that for any sufficiently large integer N ≥ N0(P, d) there exists n such that P (n)
contains exactly N occurrences of the block (q − 1, q − 1, . . . , q − 1) in its digital expansion
in base q. The method of proof is constructive. It allows to give a lower estimate on the
number of “0” resp. “1” symbols in polynomial extractions of the Rudin–Shapiro sequence.

1. Introduction

Any introductory course on automatic sequences starts in one way or another with the
example of the Thue–Morse sequence (sequence A010060 in the OEIS [5]), i.e.,

(tn)n≥0 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .

The maybe second best known example of an automatic sequence is the Rudin–Shapiro se-
quence (sometimes also known as the Golay–Rudin–Shapiro sequence; see [6, 7]). Similarly
to the Thue–Morse sequence, the Rudin–Shapiro sequence can be defined in various equiv-
alent ways. The most common one (for combinatorialists on words) is via the substitution
a 7→ ab, b 7→ ac, c 7→ db, d 7→ dc and the mapping a 7→ 0, b 7→ 0, c 7→ 1, d 7→ 1. For
the aim of this note, we will make use of the numbertheoretic definition of the sequence:
Denote by Rn the number of (possibly overlapping) occurrences of the block “11” in the
base two expansion of n. For example, R59 = 3 since 59 = (111011)2 written in base two.
Let rn = Rn mod 2, so that r59 = 1. Then the sequence

(rn)n≥0 = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, . . .

is the Rudin–Shapiro sequence (see also [1]; A020987 in the OEIS). The overall distribution of
the two symbols in the sequence (rn) is well understood. Brillhart and Morton [2] calculated
explicit (sharp) constants c1, c2 such that

(1) c1
√
N <

N

2
−
∑
n<N

rn < c2
√
N, N ≥ 1.

This means that there is a weak preponderance of the symbol 0 over symbol 1 in the Rudin–
Shapiro sequence. For the Thue–Morse sequence, one easily verifies that

−1

2
≤ N

2
−
∑
n<N

tn ≤
1

2
, N ≥ 1.
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The rarefication of automatic sequences has its early roots in work of Gelfond [3] from
1967/68. He considered the distribution of the sum-of-digits function evaluated on arithmetic
progressions. In particular, his work implies that the symbols 0 and 1 in the Thue–Morse
sequence are equidistributed when the restriction is to arithmetic progressions. More diffi-
cult rarefications, such as primes and squares, have been considered in recent years, and put
in the context of Sarnak’s “Möbius randomness principle” and related “prime number theo-
rems”. We refer to the work of Mauduit and Rivat [4] and the references given therein. The
underlying problem shows that the growth rate of the subsequence is crucial. In that sense,
primes and squares have still a “quite large” relative density in the integers whereas subse-
quences of larger growth (polynomials of large degree, for example) remain still out-of-reach
of the current methods. There is no particular reason to believe that the behaviour concern-
ing the distribution along such subsequences should be different than the overall behaviour,
but it remains, for example, still a difficult open problem to determine (asymptotically) the
number of 1’s in the extraction of cubes in the Thue–Morse sequence, i.e., as N →∞,

{n < N : tn3 = 1} ∼ N

2
?

In the sequel, let P [x] ∈ Z[x] denote an integer-valued polynomial that takes only positive
values. The best known lower bound for the Thue–Morse sequence is due to the author [8].
He proved that

(2) {n < N : tP (n) = 1} � N4/(3 degP+1).

In the present note we show (with an application of the same method) that the symbols 0
and 1 appear infinitely many often in the extraction along indices P (n) within the Rudin–
Shapiro sequence and give a lower estimate similar to (2). On our way, we prove that for
each sufficiently large integer N we can find an integer n such that the number of digital
blocks of length d (overlapping or non-overlapping) of the form (q− 1, . . . , q− 1), i.e., blocks
consisting of digits q − 1 repeated d times, in P (n) is exactly N .

2. Notation and Main Result

Let q ≥ 2 be an integer. For n ∈ N we write∑
i≥0

εi(n)qi, εi(n) ∈ {0, 1, . . . , q − 1}

for its digital expansion in base q. For fixed q we denote by ed(n) the number of occurrences
of the block (q − 1, q − 1, . . . , q − 1) of length d ≥ 1 (possibly overlapping) in the base q
representation of n, by U(n) the number of leading digits (q − 1) in the expansion of n and
by L(n) the number of trailing digits (q − 1) in the representation of n. For instance, for
q = 10 and n = 9184399992399 we have e2(n) = 4, U(n) = 1 and L(n) = 2.

Theorem 1. There is N0(q, P, d) > 1 such that for all N ≥ N0(q, P, d) there is an n with
ed(P (n)) = N .

We actually get an in some respect stronger result if we look at arithmetic progressions.
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Theorem 2. Let m ≥ 2. There exist C = C(q, P, d,m) > 0 and N0 = N0(q, P, d,m) ≥ 1
such that for all a ∈ Z and all N ≥ N0,

#{0 ≤ n < N : ed(P (n)) ≡ a mod m} ≥ CN4/(3 degP+1).

A statement about the Rudin–Shapiro sequence follows by taking q = d = m = 2.

Corollary 1. We have ∑
n<N

rP (n) �P N4/(3 degP+1), N →∞.

3. Proofs

The result is based on a crucial lemma about polynomials with a certain sign structure in
their l-th power [8]. For the sake of completeness, we also give the proof here.

Lemma 1. For m0,m1,m2,m3 ∈ R+ and l ≥ 1 denote

(3) t(x) = m3x
3 +m2x

2 −m1x+m0, Tl(x) = t(x)l =
3l∑
i=0

cix
i,

with ci = ci(m3,m2,m1,m0, l). If

1 ≤ m0,m2,m3 < q, 0 < m1 < l−1(6q)−l

then ci > 0 for i = 0, 2, 3, . . . , 3l and ci < 0 for i = 1. Moreover, for all i,

(4) |ci| ≤ (4q)l.

Proof. The bound (4) follows from easy considerations. For the first statement, observe that
c0 = ml

0 > 0 and c1 = −lm1m
l−1
0 which is negative. Assume now that 2 ≤ i ≤ 3l and

consider the coefficient of xi in

(5) Tl(x) = (m3x
3 +m2x

2 +m0)
l + r(x),

where

r(x) =
l∑

j=1

(
l

j

)
(−m1x)j

(
m3x

3 +m2x
2 +m0

)l−j
=

3l−2∑
j=1

djx
j.

First, consider the first summand in (5). Since m0,m2,m3 ≥ 1 the coefficient of xi in the
expansion of (m3x

3 + m2x
2 + m0)

l is ≥ 1. Note also that all the powers x2, x3, . . . , x3l

appear in the expansion of this term due to the fact that every i ≥ 2 allows at least one
representation as i = 3i1+2i2 with non-negative integers i1, i2. We prove that for sufficiently
small m1 > 0 the coefficient of xi in the first summand in (5) is dominant. Suppose that
m1 < 1 so that m1 > mj

1 for 2 ≤ j ≤ l. Then

|dj| < l2lm1(3q)
l = l (6q)lm1, 1 ≤ j ≤ 3l − 2.

Therefore, if m1 < l−1(6q)−l then all of x2, . . . , x3l in the polynomial Tl(x) have positive
coefficients. �

Counting blocks, as we do, is certainly not a q-additive process in the strict sense (com-
pared to the case of the sum-of-digits function and the Thue–Morse sequence), but we are
not far off as seen in the following proposition.
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Proposition 1. Let 1 ≤ qu−1 ≤ b < qu ≤ qk and a, k ≥ 1.

(i) If b < qk−1 then

ed(aq
k + b) = ed(a) + ed(b).

(ii) If k − u ≥ d then

ed(aq
k − b) = k − u− d+ 1 + ed(a− 1) + ed(q

u − b)
+ min(d− 1, L(a− 1)) + min(d− 1, U(qu − b)).

Proof. The condition in (i) guarantees that there are no blocks (q−1, . . . , q−1) that span over
the a and b parts. The statement (ii) follows from ed(aq

k−b) = ed((a−1)qk+qk−qu+qu−b)
and by considering the various possibilities for the block. �

We start with the easier case of monomials,

P (x) = xh, h ≥ 1,

and generalize in a second step to general polynomials P (x) ∈ Z[x]. We regard d and h as
fixed quantities. Lemma 1 shows that for all integers m0,m1,m2,m3 with

(6) qv−1 ≤ m0,m2,m3 < qv, 1 ≤ m1 < qv/(hq(6q)h),

the polynomial Th(x) = (t(x))h = P (t(x)) has all positive integer coefficients with the only
exception of the coefficient of x1 which is negative. Let v be an integer such that

(7) qv ≥ 2hq(6q)h

and let k ∈ Z be such that

(8) k > hv + 2h+ 1.

With these inequalities at hand, the interval for m1 in (6) is non-empty and

qk−1 > qhv · q2h ≥ (4qv)h ≥ |ci|, for all i = 0, 1, . . . , 3h,

where ci is the coefficient of xi in Th(x). We now use Proposition 1 (i) to get

ed(t(q
k)h) = ed

(
3h∑
i=2

ciq
ik − |c1|qk + c0

)
=

3h∑
i=3

ed(ci) + ed(c2q
k − |c1|) + ed(c0).

Let u be such that qu−1 ≤ |c1| < qu. Since |c1| = hm1m
h−1
0 we see that u only depends on

m0,m1. Suppose that, in addition to (8) we also have

(9) k ≥ d+ u.

Then by Proposition 1 (ii) we get

ed(t(q
k)h) =

3h∑
i=3

ed(ci) + ed(c0) + k − u− d+ 1 + ed(c2 − 1) + ed(q
u − |c1|)

+ min (d− 1, L(c2 − 1)) + min (d− 1, U(qu − |c1|))

which means that

ed(t(q
k)h) = k +M
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with M = M(m0,m1,m2,m3). Once we fix m0,m1,m2 and m3 (with fixed d and h) in the
ranges (6), the quantity M does not depend on k and is constant whenever k satisfies (8)
and (9), say, k ≥ k0. A simple calculation shows that we may take

(10) k0 = hv + 2h+ d+ 1.

This already proves Theorem 1 for the case of monomials xh.

Now, since

(11) ed(t(q
k)h), for k = k0, k0 + 1, . . . , k0 +m− 1,

runs through a complete set of residues mod m, we hit a fixed arithmetic progression mod
m for some k with k0 ≤ k ≤ k0 +m− 1. Therefore, by (6) we find at least

(12) (qv − qv−1)3(qv/(hq(6q)h)− 1)�q,h q4v

integers n that by (8), (9) and (11) are all smaller than

qv · q3(hv+2h+d+m) = q3(2h+d+m) · qv(3h+1)

and satisfy ed(n
h) ≡ a mod m for fixed a and m. Note that by our construction all these

integers are distinct. We denote

N0 = N0(q, h, d,m) = q3(2h+d+m) · qv0(3h+1),

where

v0 =
⌈
logq

(
2hq(6q)h

)⌉
= Oq,h(1).

Then for all N ≥ N0 we find v ≥ v0 with

(13) q3(2h+d+m) · qv(3h+1) ≤ N < q3(2h+d+m) · q(v+1)(3h+1).

By (12) and (13), we finally find

�q,h,d,m N4/(3h+1)

integers n with 0 ≤ n < N and ed(n
h) ≡ a mod m, thus we also get the statement of

Theorem 2 for the case of monomials P (x) = xh with h ≥ 1.

Finally, let P (x) = ahx
h + · · · + a0 ∈ Z[x]. Without loss of generality we may assume

that all ai are positive, since otherwise there exists f = δ(P ) depending only on δ such that
P (x+δ) has all positive coefficients. By Lemma 1 we see that the polynomial P (t(x)) has all
positive coefficients with the exception of a negative coefficient to the power x1. Choosing k
sufficiently large, e.g.,

k > hv + 2h+ d+ logq

(
max
0≤i≤h

ai

)
,

we can again split the digital structure of P (t(qk)) and can apply the same reasoning as
above to obtain the general statements of Theorems 1 and 2. We leave the details to the
interested reader.
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