ON POLYNOMIAL EXTRACTIONS OF THE RUDIN-SHAPIRO
SEQUENCE

THOMAS STOLL

ABSTRACT. Let P(x) € Z[z] be an integer-valued polynomial taking only positive values
and let d be any fixed positive integer. The aim of this short note is to show, by elementary
means, that for any sufficiently large integer N > Ny(P,d) there exists n such that P(n)
contains ezxactly N occurrences of the block (¢ —1,¢ —1,...,¢ — 1) in its digital expansion
in base g. The method of proof is constructive. It allows to give a lower estimate on the
number of “0” resp. “1” symbols in polynomial extractions of the Rudin—-Shapiro sequence.

1. INTRODUCTION

Any introductory course on automatic sequences starts in one way or another with the
example of the Thue-Morse sequence (sequence A010060 in the OEIS [5]), i.e.,

(tn)nzo = Oa 1a 1707 17()’07 17 170707 1707 1a 1707 s

The maybe second best known example of an automatic sequence is the Rudin—Shapiro se-
quence (sometimes also known as the Golay-Rudin—Shapiro sequence; see [6, 7]). Similarly
to the Thue-Morse sequence, the Rudin—Shapiro sequence can be defined in various equiv-
alent ways. The most common one (for combinatorialists on words) is via the substitution
a +— ab, b — ac, ¢ — db, d — dc and the mapping a — 0, b — 0, c — 1, d — 1. For
the aim of this note, we will make use of the numbertheoretic definition of the sequence:
Denote by R, the number of (possibly overlapping) occurrences of the block “11” in the
base two expansion of n. For example, Ry = 3 since 59 = (111011), written in base two.
Let r, = R, mod 2, so that r59 = 1. Then the sequence

(rn)n>0 = 0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,. ..

is the Rudin—Shapiro sequence (see also [1]; A020987 in the OEIS). The overall distribution of
the two symbols in the sequence (r,,) is well understood. Brillhart and Morton [2] calculated
explicit (sharp) constants ¢y, ¢ such that

N
(1) Cl\/ﬁ<5—z7’n<62\/ﬁ, N > 1.
n<N

This means that there is a weak preponderance of the symbol 0 over symbol 1 in the Rudin—
Shapiro sequence. For the Thue-Morse sequence, one easily verifies that

——<——Ztn§%, N >1.
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The rarefication of automatic sequences has its early roots in work of Gelfond [3] from
1967/68. He considered the distribution of the sum-of-digits function evaluated on arithmetic
progressions. In particular, his work implies that the symbols 0 and 1 in the Thue-Morse
sequence are equidistributed when the restriction is to arithmetic progressions. More diffi-
cult rarefications, such as primes and squares, have been considered in recent years, and put
in the context of Sarnak’s “Mdobius randomness principle” and related “prime number theo-
rems”. We refer to the work of Mauduit and Rivat [4] and the references given therein. The
underlying problem shows that the growth rate of the subsequence is crucial. In that sense,
primes and squares have still a “quite large” relative density in the integers whereas subse-
quences of larger growth (polynomials of large degree, for example) remain still out-of-reach
of the current methods. There is no particular reason to believe that the behaviour concern-
ing the distribution along such subsequences should be different than the overall behaviour,
but it remains, for example, still a difficult open problem to determine (asymptotically) the
number of 1’s in the extraction of cubes in the Thue-Morse sequence, i.e., as N — oo,

N
{n<N: tn3:1}~3 ?
In the sequel, let P[z] € Z[x] denote an integer-valued polynomial that takes only positive
values. The best known lower bound for the Thue-Morse sequence is due to the author [8].

He proved that
(2) {n < N . tP(’n,) = 1} > N4/(3degp+l).

In the present note we show (with an application of the same method) that the symbols 0
and 1 appear infinitely many often in the extraction along indices P(n) within the Rudin—
Shapiro sequence and give a lower estimate similar to (2). On our way, we prove that for
each sufficiently large integer N we can find an integer n such that the number of digital
blocks of length d (overlapping or non-overlapping) of the form (¢—1,...,¢—1), i.e., blocks
consisting of digits ¢ — 1 repeated d times, in P(n) is exactly N.

2. NOTATION AND MAIN RESULT

Let ¢ > 2 be an integer. For n € N we write

Zai(n)qi, ei(n) €{0,1,...,q—1}

i>0

for its digital expansion in base ¢. For fixed g we denote by e4(n) the number of occurrences
of the block (¢ — 1,¢g —1,...,9 — 1) of length d > 1 (possibly overlapping) in the base ¢
representation of n, by U(n) the number of leading digits (¢ — 1) in the expansion of n and
by L(n) the number of trailing digits (¢ — 1) in the representation of n. For instance, for
g = 10 and n = 9184399992399 we have ey(n) =4, U(n) =1 and L(n) = 2.

Theorem 1. There is No(q, P,d) > 1 such that for all N > Ny(q, P,d) there is an n with
6d(P(TL)) = N.

We actually get an in some respect stronger result if we look at arithmetic progressions.
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Theorem 2. Let m > 2. There exist C = C(q, P,d,m) > 0 and Ny = Ny(q, P,d,m) > 1
such that for all a € Z and all N > Ny,

#{0<n<N: eyP(n))=amodm}>CNYBdsP+l)
A statement about the Rudin—Shapiro sequence follows by taking ¢ = d = m = 2.
Corollary 1. We have

Z T (n) >p ]\74/(3degP+1)7 N — 0o.
n<N

3. PROOFS

The result is based on a crucial lemma about polynomials with a certain sign structure in
their [-th power [8]. For the sake of completeness, we also give the proof here.

Lemma 1. For mg,my,my, mg € RT and [ > 1 denote

31
(3) t(z) = mza® + maox® — myx + My, Ti(z) = t(z)' = Z cix',
i=0
with ¢; = ¢;(ms, mg, my, mg, ). If
1 < mg,mae, m3 < q, 0<my <17(6g)"
then ¢; > 0 fori=20,2,3,...,3l and ¢; <0 fori=1. Moreover, for all i,
(4) lei] < (4q)"
Proof. The bound (4) follows from easy considerations. For the first statement, observe that
co = mé > 0 and ¢; = —lmlmé_l which is negative. Assume now that 2 < ¢ < 3[ and
consider the coefficient of 2* in
(5) Ty(x) = (msa® 4+ mox® + mg)' + r(x),
where
Lo/ ' L.oazz
r(z) = ( ) (—muz)’ (maa® + moz® +mg) = digd

First, consider the first summand in (5). Since mg, mg, ms > 1 the coefficient of z’ in the
expansion of (mzx® + mox? + mg)! is > 1. Note also that all the powers 22, 23,... 23
appear in the expansion of this term due to the fact that every ¢ > 2 allows at least one
representation as ¢ = 3iy 4 2i5 with non-negative integers i;,i5. We prove that for sufficiently
small m; > 0 the coefficient of z* in the first summand in (5) is dominant. Suppose that

m1<1sothatm1>m{for2§j§l. Then

|d;| < 12'my(3¢)' = 1(6q)' my,  1<j<3l—2.
Therefore, if m; < [71(6¢)~! then all of 22,..., 2% in the polynomial T;(z) have positive
coefficients. 0

Counting blocks, as we do, is certainly not a g-additive process in the strict sense (com-
pared to the case of the sum-of-digits function and the Thue-Morse sequence), but we are

not far off as seen in the following proposition.
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Proposition 1. Let 1 < ¢ ' <b< ¢* <¢" and a,k > 1.
(i) If b < "' then
ea(ag” +b) = eq(a) + eq(b).
(i) If k —u > d then
ea(ag" —b) =k —u—d+1+eq(a—1)+eq(q" —b)
+min(d — 1, L(a — 1)) + min(d — 1, U(¢" — b)).
Proof. The condition in (¢) guarantees that there are no blocks (¢—1, ..., ¢—1) that span over

the a and b parts. The statement (i7) follows from eq(ag® —b) = eq((a—1)¢"* +q¢* —q* +q* —b)
and by considering the various possibilities for the block. 0

We start with the easier case of monomials,
P(x) = a", h>1,

and generalize in a second step to general polynomials P(z) € Z[x]. We regard d and h as
fixed quantities. Lemma 1 shows that for all integers mq, my, mo, ms with

(6) ¢t <mo,mg,ms < ¢, 1< my <¢°/(hq(69)"),

the polynomial T}, (x) = (t(x))" = P(t(z)) has all positive integer coefficients with the only
exception of the coefficient of 2! which is negative. Let v be an integer such that

(7) ¢ > 2hq(6q)"
and let k& € Z be such that
(8) k> hv+2h+ 1.

With these inequalities at hand, the interval for m, in (6) is non-empty and
> " P > (49 > e, foralli=0,1,...,3h,

where ¢; is the coefficient of z* in T}, (x). We now use Proposition 1 (i) to get

3h 3h
ea(t(g™)") = eq <Z ciq® — |ellg” + co) = Z ea(c;) + ea(caq”™ — |c1]) + ealco).
i=2 i=3

Let u be such that ¢“~' < |e;] < ¢%. Since |¢;| = hmym{™ we see that u only depends on

mg, my. Suppose that, in addition to (8) we also have
9) k> d+ u.
Then by Proposition 1 (ii) we get

ca(t(d")") =) ealci) + ealco) + k —u—d+ 1+ ealcz — 1) + ealq” — |ca])

1=3

+min(d—1,L(ca — 1)) + min (d — 1,U(¢" — |c1]))

which means that

calt(q)") =+ M



with M = M (mg, my1, ma, mg). Once we fix mg, my, ms and mg (with fixed d and h) in the
ranges (6), the quantity M does not depend on k and is constant whenever k satisfies (8)
and (9), say, k > ko. A simple calculation shows that we may take

(10) ko= hv+2h +d+ 1.
This already proves Theorem 1 for the case of monomials x".
Now, since
(11) ea(t(g™M), for k=ko, ko+1, ..., ko+m—1,

runs through a complete set of residues mod m, we hit a fixed arithmetic progression mod
m for some k with kg < k < kg +m — 1. Therefore, by (6) we find at least

(12) (¢" =" ")*(¢"/(ha(69)") = 1) >q¢p "
integers n that by (8), (9) and (11) are all smaller than

3(hv+2h+d+m) _ q3(2h+d+m) (3h+1)

¢ -q ¢
and satisfy eq(n”") = a mod m for fixed a and m. Note that by our construction all these
integers are distinct. We denote

NO = No(q’ h’ d, m) — q3(2h+d+m) _qv0(3h+1)’

where

vy = ﬂogq (2hq(6q)hﬂ = Ogn(1).
Then for all N > N,y we find v > vy with

(13) q3(2h+d+m) _qv(Sh—H) <N < q3(2h+d+m) .q(v+1)(3h+1)

By (12) and (13), we finally find
S ondm NY/GID

integers n with 0 < n < N and e4(n") = a mod m, thus we also get the statement of
Theorem 2 for the case of monomials P(z) = z" with h > 1.

Finally, let P(x) = apa™ + -+ + ag € Z[x]. Without loss of generality we may assume
that all a; are positive, since otherwise there exists f = 6(P) depending only on ¢ such that
P(z+6) has all positive coefficients. By Lemma 1 we see that the polynomial P(¢(z)) has all
positive coefficients with the exception of a negative coefficient to the power 2. Choosing k
sufficiently large, e.g.,

0<i<h

k>hv+2h+d+logq(maxai>,

we can again split the digital structure of P(t(¢*)) and can apply the same reasoning as
above to obtain the general statements of Theorems 1 and 2. We leave the details to the

interested reader.
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