Abstract

In this talk we will present a study of the equation \([x] = [x + a] + s \) where \(x \) and \(a \) are positive integers, \(s \) is an integer and \([x] \) denotes the number of “1” in the binary decomposition of \(x \). We will be interested in solving this equation for fixed \(a \) and \(s \) as well as the statistical behaviour of \([x] - [x + a] \) for a fixed positive integer \(a \).

1 Introduction

Let \(x \) be a positive integer and \([x] \) denote the number of “1” in the binary expansion of \(x \). We are interested in solving the equation \([x] = [x + a] + s \) for fixed \(a \in \mathbb{N} \) and \(s \in \mathbb{Z} \). The means employed for such a problem are mainly combinatorial via the construction of a summation tree. Knowing the structure of solutions of such an equations allows, for each \(a \in \mathbb{N} \), the study of the distribution of probability of the difference \([x] - [x + a] \), given by the function \(\mu_a \) over \(l^1(\mathbb{Z}) \), where \(x \) can be identified with its binary expansion and so as a sequence of 0 and 1 with balanced Bernouilli distribution of probability. To this end, we study further the summation tree we introduced earlier. Being able to compute such a probability measure for each positive integer \(a \) we then focus on the study of its asymptotic behaviour as \(a \) gets large. This involves looking at pathes in a particular Schreier graph of the Baumslag-Solitar group of type \((1, 2) \).

2 Results

We wish to have a precise, constructive, understanding of the solutions of the equation \([x] = [x + a] + s \) for any set of parameters \(a \) and \(s \). To this end, we construct an infinite binary tree associated to \(a \) on which it is possible to read the binary expansion of solutions to this equation as pathes on this tree. An example of a part of such a tree is given on figure 1. Such a construction allows us to prove the following theorem:

Theorem 1 Let \(a \in \mathbb{N} \) and \(s \in \mathbb{Z} \). There exists a finite set of prefixes

\[
\mathcal{P} = \{p_1, ..., p_k\} \subset \{0, 1\}^*
\]

such that \(x \in \mathbb{N} \) is solution of \([x] = [x + a] + s \) if and only if the binary expansion of \(x \) starts with one of the prefixes \(p_i \).

*Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France. E-mail: jordan.emme@univ-amu.fr
†Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France. E-mail: sasha.prihodko@gmail.com
Let us now define, for any positive integer \(a \), the function \(\mu_a \in l^1(\mathbb{Z}) \) defined by

\[
\forall s \in \mathbb{Z}, \quad \mu_a(s) = \mathbb{P}(\{ x \in \mathbb{N} \mid [x] - [x + a] = s \})
\]

where \(\mathbb{P} \) is the balanced Bernoulli probability measure on \(\{0, 1\}^\ast \) and by identifying the integer \(x \) and its binary expansion. Collapsing the tree on a particular Bratelli diagram as shown in figure 2 and understanding its patterns allows us to prove the next theorem:

Theorem 2 The function \(\mu_a \) is calculated via an infinite product of matrices

\[
\mu_a = (1, 1) \cdots A_{a_n} A_{a_{n-1}} \cdots A_{a_1} A_0 \left(\begin{array}{c} \delta_0 \\ 0 \end{array} \right),
\]

where \(a = a_0 + 2a_1 + \ldots \) is a binary expansion of \(a \), \(\delta_0(i) = \begin{cases} 0 & \text{if } i \neq 0 \\ 1 & \text{otherwise} \end{cases} \)

\[
A_0 = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \hat{\sigma} \end{pmatrix}, \quad A_1 = \begin{pmatrix} \frac{1}{2} \hat{\sigma} & 0 \\ \frac{1}{2} \hat{\sigma}^{-1} & 1 \end{pmatrix},
\]

and \(\hat{\sigma} : (p_j) \mapsto (p_{j+1}) \) is the shift transformation on \(l^1(\mathbb{Z}) \).
The final part of our investigation is dedicated to the asymptotic behaviour of μ_a for large integers a. We have to use the following object:

Definition 1 Let G be a finitely generated group with a generator set S, and let H be a subgroup, not necessary normal, such that $S \cap H = \emptyset$. The Schreier graph for the triple (G, H, S) is defined as the orientated graph with vertex set G/H and edge set $E = \{(aH, saH) | a \in G, s \in S\}$.

The group we wish to consider is the Baumslag-Solitar group of type $(1,2)$ which is defined by

$$BS(1, 2) = \langle \sigma, S \mid \sigma S \sigma^{-1} = S^0 \rangle$$

in the particular case where the generators are the following real functions

$$\sigma : y \to 2y, \quad S : y \to y + 1.$$

This group naturally acts on the set of diadic integers. Then, for the generator set $\{S, S^{-1}, \sigma\}$ and a certain subgroup of $BS(1, 2)$, there is an associated Schreier graph Γ where it is possible to associate vertices to diadic integers.

Then, for all integer a, denote by γ_a the geodesic linking 0 to a in Γ and denote by w the weight function on $BS(1, 2)$ taking value 1 on S, S^{-1} and 0 on σ, σ^{-1}. Finally, let $\|a\|_0 = \int_{\gamma_a} w(g) \, dg$. We have the following result:

Theorem 3 For $\|a\|_0$ large enough, we have the following inequality:

$$\|\mu_a\|_2 \leq C_0 \cdot \|a\|_0^{-1/4}$$

where C_0 is a universal constant.

The study of such a problem is motivated by its links with some ergodic properties of Vershik’s transformation in the Pascal triangle.