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Abstract

Sandpile is a class of conservative discrete dynamical systems, where cubic sand grains
move around according to local rules. One naturally wants sand heaps to be decreasing,
as conical heaps formed in hourglasses. This extended abstract introduces convenient tools
towards a characterization of emergent regularities in decreasing sandpile models: recurrence
automata. Interestingly, the technic presented here allows to deal with very regular sand
patterns emerging from an initial phase of apparent disorder, without necessitating a precise
understanding of this latter. It generalizes earlier works presented in [17, 18], and asks how
far can we go following this track?

1 Introduction

Interaction driven systems are everywhere in nature, and understanding their dynamic is a
present challenge. Sandpile models provide a formal frame of work for the mathematical study
of emergent structures. After the seminal works of Bak, Tang, Wiesenfeld [2], and later Dhar
[3], their received great attention. From the basic models [7, 8, 10, 11, 14, 16, 19] to more
involved ones [4, 5, 6, 12, 17, 18], a motivating goal has to to describe the shape of fixed point
configurations, thus answering the question: where does the dynamic leads to?

This extended abstract concentrates on the whole class of one-dimensional sandpile models
verifying only one property: decrease. Consider an hourglass, in the absence of wind it is
natural to require the configuration of sand grains, in the dynamical process letting grains fall
from the top and avalanching on the sides, to be decreasing so that it looks approximately like
a cone. This is what decreasing sandpile models catch.

The main result we present is the construction of a finite state automaton describing fixed point
configurations. This automaton recognizes a very restricted language, which words are the only
one that can possibly (or rather non-impossbly) account for the shape of the fixed point, and
where emergent structures can often directly be pointed out. First, we present the definition of
decreasing sandpile models together with elementary background and classical structural results
in Section 2. Then, Section 3 exposes the construction of an internal dynamic of fixed points,
whose iterations describe fixed points. A combination of arguments from linear algebra and
combinatorics will thereafter allow to prove the emergence of regularities on fixed points, and
recurrence automata embedding them will finally be presented. We conclude in Section 4 with
ideas on how to improve the restrictions included in recurrence automata, in order to have a
very precise description of emergent structures in the shape of fixed points.
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Figure 2: An example of evolution for the rule p2, 1q, from the configuration p26, 0ωq to the fixed
point h “ p11, 7, 4, 3, 1, 0ωq. Transitions are labeled with the fired index.

2 Decreasing sandpiles

Decreasing sandpile models are discrete dynamical systems: configurations are non-increasing
sequences of integers phiqiPN where hi is the number of stacked grains on column i; and there
is a transition rule telling how grains move when the slope is too sharp. The slope at i is the
height difference ∆hi “ hi ´ hi`1. The rule is a p-tuple pg1, . . . , gpq with g1 ě ¨ ¨ ¨ ě gp ą 0,
where G “

řp
j“1 gj grains can fall from column i if the slope ∆hi is greater or equal to G` g1,

then gj of those grains land on column i` j (example on Figure 1). The reason the slope should
be greater or equal to G` g1 is to preserve a non-increasing sequence of sand columns: G grains
leave column i and g1 land on column i ` 1, therefore ∆hi looses G ` g1 units of slope, and
should remain non-negative.

ě G`g1

Figure 1: The rule p2, 1q is ap-
plied only if ∆hi ě 5. Right is
the direction of grains fall.

Definition 1. A decreasing sandpile model is a discrete dynamical
system defined by the following two sets.
• Configurations. Infinite non-increasing integer sequences.
• Transition rule: A positive and non-increasing p-tuple pg1, g2 . . . , gpq,

that is with g1 ě ¨ ¨ ¨ ě gp ą 0. Let G “
řp

j“1 gj .
From a configuration h, a transition at i leads to
the configuration h1, denoted h

i
Ñh1, such that:

– h1i “ hi ´G;
– h1i`j “ hi`j ` gj for 1 ď j ď p;
– h1j “ hj otherwise.

We also say that i is fired. We denote h Ñ h1 without specifying the fired column, and Ñ˚ its
reflexo-transitive closure. The rule can be applied only if ∆hi ě G ` g1 (G is the number of
grains moving, and the total number of sand grains is conserved), i.e., when i is unstable. We call
stable, or a fixed point, a configuration that has no unstable column, and finite a configuration
that has a finite number of sand grains. The infinite sequence of 0 is denoted 0ω. Decreasing
sandpile models are non-deterministic, the rule is applied once at each time step (example of
evolution on Figure 2).

Remark 1. The classical one-dimensional sandpile rule is the 1-tuple p1q, and the Kadanoff
sandpile rule with parameter p is the p-tuple p1, 1, . . . , 1q.

To gain locality in the representation of configurations, that is, to gain independence on the po-
sition within the configuration, we conveniently represent them as sequences of slopes p∆hiqiPN.
The fixed point of Figure 2 is for example ∆h “ p4, 3, 1, 2, 1, 0ωq.

The models are non-deterministic, but every finite configuration reaches a unique fixed point.

Proposition 1. Every finite configuration ∆h converges to a unique fixed point, denoted πp∆hq.

Proof sketch. Diamond property plus termination ensures confluence (see for example [1]).

This extended abstract focuses on the fixed point reached after a finite number N of sand grains
have been added on column 0. Starting from the empty configuration ∆h “ p0ωq, we add a first
grain on column 0 and stabilize (i.e., apply the rule until reaching a stable configuration), add
a second grain on column 0 and stabilize, add a third grain on column 0 and stabilize, etc, N
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times. Let ∆hÓ0 denote configuration ∆h plus one grain on column 0, and f rNs denote the N th

iteration of function f , this inductive procedure that adds grains one by one is therefore

pπ ˝ ¨Ó0qrNspp0ωqq “ πpπp. . . πpp0ωqÓ0qÓ0 . . . qÓ0q.

In addition, there is another sequential procedure, which consists in starting from the initial
configuration pN, 0ωq (we abuse notation and also denote N this configuration) and stabilizing
it. The two procedures lead to the same fixed point.

Proposition 2. (sequential definition) πpNq “ pπ ˝ ¨Ó0qrNspp0ωqq (inductive definition).

Remark 2. πpNq is the sequence of slopes ∆h of the fixed point with N grains.

Proof sketch. The key fact is that πpk´1qÓ0 is reachable from pk, 0ωq, for any k P N. The result
then follows by induction on N P N, from the unicity of the stable configuration reached.

Later on, we will construct an automata that recognizes asymptotically πpNq (sequence of
slopes), starting from a logarithmic index, that is, pπpNqiqiěn for n P OplogNq. For this result
to make sense, we provide the following tight bound on the width of the fixed point.

Proposition 3. Whatever the rule is, the width wpπpNqq “ minti | πpNqj “ 0 for all j ě iu of
the fixed point is in Θp

?
Nq.

Proof sketch. The fixed point πpNq is a non-degenerated rectangular triangle of area N , so
both its sides are in the order of

?
N .

Thus our description will asymptotically account for the whole fixed point. Let us denote by
CpNq the set of reachable configurations from pN, 0ωq. Every configuration ∆h of this set admits
another representation pviqiPN called shot vector, where vi is the number of times the rule has
been applied on column i to go from pN, 0ωq to ∆h. For example, the shot vector of the stable
configuration on Figure 2 is v “ p5, 1, 1, 0ωq. The next property is straightforward to obtain.

Proposition 4. The shot vector of each configuration in CpNq is unique.

Following the lines of [12], one can also see that decreasing sandpile models have a lattice
structure.

Theorem 1. CpNq endowed with Ñ has a graded lattice structure.

We also denote ∆v the sequence of differences of shot vector, such that ∆vi “ vi ´ vi`1. Let us
give an example of fixed point where regular structures emerge (all the simulations done so far
exhibit similar phenomena). For R “ p7, 5, 2, 1q and N “ 12 345, the fixed point πp12 345q is

h“ 570,560,543,528,520,500,487,477,457,436,434,417,409,391,382,364,355,337,328,310,301,283,274,256,247,229,220,202,193,175,166,148,139,121,112,94,85,82,66,58,40,31,13,4,1,0ω

∆h“ 10, 17, 15, 8, 20, 13, 10, 20, 21, 2, 17, 8, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 18, 9, 3,16, 8,18, 9,18, 9,3,1,0ω

v“ 785,329,379,356,354,323,309,291,275,259,243,228,213,199,185,172,159,147,135,124,113,103, 93, 84, 75, 67, 59, 52, 45, 39, 33, 28, 23, 19, 15,12, 9, 6, 4, 2, 1,0ω

∆v“ 456,-50, 23, 2, 31, 14, 18, 16, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 1, 1,0ω

where we see very regular patterns emerging from a (short) disordered transient sequence. We
assimilate a configuration with any of its representations. The representations h (heights), ∆h
(slopes) and v (shot vector) of a configuration in CpNq are obviously linked. In particular, let
∆gj “ gj ´ gj`1 and ∆gp “ gp, for all i ě p we have

∆hi “ ∆gp vi´p ` ¨ ¨ ¨ `∆g2 vi´2 `∆g1 vi´1 ´ pG` g1q vi `Gvi`1 (1)

because the slope at i was initially null and is increased by ∆gp units each time vi´p is fired,
increased by ∆gp´1 units each time vi´p`1 is fired, etc.

3 Fixed points and recurrence automata

From now on, we only deal with fixed points. This section aims at defining recurrence automata
recognizing p∆hiqiěn for some n in OplogNq, which asymptotically accounts for the whole fixed
point (recall Proposition 3). We first rephrase Equation (1) to get a new discrete dynamical
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system whose iterations describe the fixed point from left to right. This perturbed weighted
mean system will then be expressed in matricial form, in order to prove its exponentially quick
convergence to particular sequences. This means that starting from an index n logarithmic
in the number of grains N , the possibilities for p∆hiqiěn are very restricted. This result will
thereafter be embedded in recurrence automata, a convenient tool to continue this study of
emergent structures in decreasing sandpiles.

Let us begin with the construction of an internal dynamic of fixed points describing a configura-
tion from left to right. Through simple manipulations, Equation 1 is equivalent to the recurrence
relation

∆vi “
1

G

´

g1 ∆vi´1 ` g2 ∆vi´2 ` ¨ ¨ ¨ ` gp ∆vi´p

¯

´
∆hi
G

(2)

of a discrete dynamical system describing the configuration from left to right: given p consecutive
values p∆vjqi´pďjăi, we compute ∆vi as

• the average of p∆vjqi´pďjăi weighted by pg1, . . . , gpq (recall that
ř

gi “ G);
• minus a perturbation ∆hi

G in order to remain in Z (because ∆vi is an integer).

We express Recurrence equation (2) in matricial form,

∆Vi “M ∆Vi´1 ´
∆hi
G

K with ∆Vi“

¨

˚

˚

˚

˝

∆vi´p`1
...

∆vi´1

∆vi

˛

‹

‹

‹

‚

M“

¨

˚

˚

˚

˝

0 1 0
. . .

0 0 1
gp
G

gp´1

G . . . g1

G

˛

‹

‹

‹

‚

K“

¨

˚

˚

˚

˝

0
...
0
1

˛

‹

‹

‹

‚

. (3)

We call it the perturbed weighted mean system, from Zp to Zp, which is composed of two parts.

• A linear map M : Rp Ñ Rp, that:
– shifts all the values one row upward;
– for the last component, computes the weighted mean of ∆Vi´1, denoted mi´1.

• A perturbation subtracted to the last component, so that the result lies in Zp.

We take ∆V´1 “
tpNgp

, 0, . . . , 0,´v0q as a starting point of the system. With it, Equation (3)
now holds for all i P N. It remains fuzzy, but only a little, for v0 can easily be bounded by

N

G` g1
´ 1 ď v0 ď

N

G
. (4)

Regarding the perturbation, we have a relation for stability (left) and one for integrity (right):

0 ď
∆hi
G

ă 1`
g1

G
ď 2 and ∆hi`1 ” Gmi mod G. (5)

Remark 3. Importantly, at most two values of ∆hi are possible, and only one if mi ě G` g1.

Let us now study the convergence of the perturbed weighted mean system. We know quite
precisely where we start (Equation (4)), and quite precisely where each iteration leads (Remark
3). We are going to prove that the system converges exponentially quickly (i.e., starting from a
logarithmic index) to almost uniform vectors (vectors with values very close to each other).

Notation 1. mi “
1
G pgp, . . . , g1q∆Vi denotes the mean of ∆Vi weighted by pgp, . . . , g1q, and mi

(resp. mi) denotes the minimal (resp. maximal) value of ∆Vi.

The first result states an exponentially quick convergence to vectors of bounded amplitude.

Lemma 1. There exists a constant α and a n0 in OplogNq such that mn0 ´mn0
ă α.

Proof sketch. Equation (4) implies that m´1´m´1 is in ΘpNq. In order to prove that iterations
of the perturbed weighted mean system tend to uniform vector, that is, vectors where each value
is close to the mean value, we take Mi “

tpmi, . . . ,miq P Rp and study the sequence pZiqiPN

where Zi “ ∆Vi ´Mi, which converges to 0. From Equation (3) we get a relation of the form

Zi “ OZi´1 ´
∆hi
G

L

4



where O is a contracting map: its spectral radius is strictly smaller than 1 (proved with a clas-
sical result due to Eneström and Kakeya, see for example [9]). As a consequence, we can isolate
the contracting map and the perturbations,

Zn “ On`1 Z´1 `
1

G

n
ÿ

i“0

∆hiO
n´i L.

The left part of the sum tends exponentially to 0 (see for example [13] for a discussion on
contracting maps), and the right part is upper bounded by some constant α´1. Since the norm
of Zi is in the order of mi ´mi, the norm of Z´1 is in ΘpNq and there exists an iteration n0 in
OplogNq such that the left term is strictly smaller that 1, giving the result.

Then, we have a convergence, linear in the amplitude mi´mi, to a sequence which is decreasing
and where two consecutive values are equal or differ by one.

Lemma 2. There exists d in Opmi´miq, such that for all k ě i`d, we have ∆vk´∆vk`1 P t0, 1u.
Moreover, ∆vk`1 “ ∆vk ´ 1 only if mi ´mi ă

g1

G .

Proof sketch. This proof strongly relies on the fact that, when mi ‰ mi, the weighted mean mi

is strictly between mi and mi. With the perturbation, bounded by Equation (5), subtracted to
it, the integer ∆vi`1 it leads to is strictly below mi, and greater or equal to mi ´ 1. When the
sequence is decreasing, we have ∆vi “ mi and it enforces that ∆vi ´∆vi`1 P t0, 1u.

In order to prove that the sequence is decreasing, we can first notice that while ∆vi`1 is above or
equal to mi, it is still strictly below mi so ∆Vi tend linearly to uniform vectors. When it happens
that ∆vi`1 “ mi ´ 1, the values embedded in ∆Vi must already be very close to each other, in
order for the mean mi to be just a little bit above mi, so that the perturbation, bounded by
Equation (5), subtracted to it can lead to a ∆vi`1 strictly below mi. In this case, a careful look
at the constraints on the closeness of the values embedded in ∆Vi allows to conclude.

As Lemma 2 talks about differences of differences of shot vector, we define the second derivative
p∆2viqiPN with ∆2vi “ ∆vi ´∆vi`1, and ∆2Vi “

tp∆2vi´p`1, . . . ,∆
2vi´1) (note that ∆2Vi can

be computed from ∆Vi). The difference mi´mi can also be computed from ∆2Vi, via the formula

mp∆2Viq “

p´1
ÿ

j“1

»

–∆2vi´j

¨

˝

p
ÿ

k“j`1

gk

˛

‚

fi

fl .

The combination of Lemmas 1 and 2 gives the following proposition.

Proposition 5. There exists a column n1 in OplogNq, such that

For all i ě n1 we have ∆2vi P t0, 1u.

Moreover, ∆2vi “ 1 only if mp∆2Viq ă g1.

Proposition 5 gives constraints on the sequence p∆2ViqiPN, that are verified exponentially quickly
(i.e., starting form a logarithmic index). Those constraints on p∆2Viqiěn1 , for some n1 in
OplogNq, imply constraints on p∆hiqiěn1`p, because we can compute the latter from the former
(using Equation (1) and the fact that all those representations of the fixed point end with 0ω).
Recurrence automata, which are Muller automata (a kind of Büchi automata with stronger
accepting condition, see definition in Appendix A), will embed those restrictions: they will
recognize only the infinite sequences of slopes that are in accordance with Proposition 5.

States of the automata will correspond to equivalence classes of vectors ∆2Vi according to
equality. Proposition 5 states that we have asymptotically ∆2Vi P t0, 1u

p´1. Then, we will have
a transition from one state representing a ∆2Vi, to another state representing the ∆2Vi`1, if and
only if it verifies the fact that most of their values are equal (for the shift of ∆2Vi accounts for a
large part of ∆2Vi`1), and is in accordance with the second part of Proposition 5. Furthermore,
the label of the transition will be the corresponding ∆hi`1 (easily computable from ∆2Vi and
∆2Vi`1). We do not know from which state to begin, but for the acceptance condition we know
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Figure 3: Recurrence automata Ap7,5,2,1q.
Transient states are shaded. The correspon-
dence with πp12 456q (see Section 2) is:
loop between 010 and 101 . . . . . . . . . . p18, 9q˚

do a detour via 100 and 001 . . . . . . . p3, 16, 8q
loop again between 010 and 101 . . . . p18, 9q˚

go to infinite loop on 000 . . . . . . . . . p3, 1, 0ωq.

that the sequence p∆hiqiěn1`p, which recurrence automata will recognize, ends with 0ω. This
always corresponds to ultimately looping forever on the state 0p´1.

Definition 2. Given a decreasing sandpile rule R, let AR be its recurrence automata, which is
the Muller automaton defined by:

• the set of states QR “ t0, 1u
p´1;

• the alphabet Σ “ N;
• the set of transitions ÑR : QR ˆ ΣˆQR where
q

a
ÝÑR q1, with q “ q1, . . . , qp´1 and q1 “ q11, . . . , q

1
p´1, if and only if

pC1q q
1
1, . . . , q

1
p´2 “ q2, . . . , qp´1;

pC2q q
1
p´1 “ 1 only if mpqq ă g1;

pC3q a “ mpqq ` q1p´1G;
• the set of initial states SR “ QR;
• the acceptance table TR “ xt0p´1uy;

and LpARq denotes the language of infinite words recognized by AR.

Example of recurrence automaton on Figure 3. Theorem 2 can be considered as a convenient
rephrasing of Proposition 5, and a step towards an asymptotic characterization of p∆hiqiPN.

Theorem 2. There exists a column n2 in OplogNq such that pπpNqiqiěn2 P LpARq.

4 Conclusion and perspectives

According to Theorem 2, recurrence automata provide an asymptotically complete description of
fixed points: from an index n2 in OplogNq compared to their width in Θp

?
Nq (Proposition 3).

Interestingly, those automata, describing emergent structures on fixed points, has been defined
without requiring a fine understanding of the initial segment from columns 0 to n2. It would be
interesting to study the level of order/disorder of this part, to measure the confrontation of two
ideas: it does not look simple at all, but it cannot be chaotic in a strong sense, for regularities
emerge from it. Note that all the grains creating regular patterns are added on column 0 and
cross this initial segment, which absolute size tends to infinity! What is precisely bypassed in
this proof, and how universal is the technic in the handling of emergent structures?

Moreover, it remains to refine recurrence automata, i.e., add more constraints to it in order to
give a precise characterization of fixed points. We would for example like to say, according to
Figure 3 and the simulation of Section 2, that rule p7, 5, 2, 1q leads to fixed points of the form
p18, 9q˚ p3, 16, 8q p18, 9q˚ p3, 1, 0ωq. We believe that considering the inductive way of computing
fixed points may now help. Indeed, from a fixed point πpNq to the next one πpN ` 1q, both
recognized by AR, there are very few differences because πpN ` 1q “ πpπpNqÓ0). The idea is
that the runs of AR on πpNq and πpN`1q must be very close, and we think that they differ only
locally. This would mean that when traveling in the automata, we are only allowed to perform
very small variations, which should furthermore match at every level: of course for p∆2viqiěn2 ,
but also for p∆viqiěn2 and pviqiěn2 . There are actually quite few possibilities, and we are already
able to issue precise characterization on some example decreasing sandpile models.
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A Muller automata

Muller automata where introduced in [15]. They are very close to Büchi automata and make
use of the concepts of automata and runs.

Definition 3. An automaton is a 4-tuple pQ,Σ,Ñ,Sq, where

• Q is a set of states;
• Σ is an alphabel;
• S is a set of initial states;
• ÑĎ Qˆ ΣˆQ is a set of transitions, and pq, a, q1q PÑ is denoted q

a
ÝÑ q1.

An automaton describes a dynamic that is captured by runs.

Definition 4. For an automaton A “ pQ,Σ,Ñ,Sq and an infinite input word w P Σω, a run
of A on w is an infinite sequence of states ρ P Qω starting at some ρ0 P S and such that for all
i P N we have ρi

w0
ÝÑ ρi`1.

The definition of Muller automata adds an accepting condition for the recognition of infinite
words.

Definition 5. A Muller automaton is a pair pA, T q, where A “ pQ,Σ, δ,Qinq is an automaton
and T “ xQ1,Q2, . . . ,Qky is an acceptance table with Qi Ď Q for i P t1, 2, . . . , ku.

The Muller automata accepts (or recognizes) an input w P Σω if there is a run ρ of A on w
such that tq P Q | Dωn : ρn “ qu “ Fi for some i.

The accepting condition is quite strong: for a word to be accepted, there must exist a run ρ and
an entry Fi of the acceptance table, such that the set of states visited infinitely often by ρ is
exactly Fi.
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